Visiblelight-induced ternary electron donor-acceptor complex enabled synthesis of 2-(2-hydrazinyl) thiazole derivatives and the assessment of their antioxidant and antidiabetic therapeutic potential

A mild and eco-friendly visible-light-induced synthesis of 2-(2-hydrazinyl) thiazole from readily accessible thiosemicarbazide, carbonyl, and phenacyl bromide in the absence of a metal catalyst and/or any extrinsic photosensitizer is reported. This approach only requires a source of visible light an...

Full description

Saved in:
Bibliographic Details
Published inOrganic & biomolecular chemistry Vol. 21; no. 8; pp. 1771 - 1779
Main Authors Dey, Sovan, Das, Arindam, Yadav, Ram Naresh, Boruah, Palash Jyoti, Bakli, Prerana, Baishya, Tania, Sarkar, Koushik, Barman, Anup, Sahu, Ranabir, Maji, Biplab, Paul, Amit Kumar, Hossain, Md. Firoj
Format Journal Article
LanguageEnglish
Published CAMBRIDGE Royal Soc Chemistry 22.02.2023
Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A mild and eco-friendly visible-light-induced synthesis of 2-(2-hydrazinyl) thiazole from readily accessible thiosemicarbazide, carbonyl, and phenacyl bromide in the absence of a metal catalyst and/or any extrinsic photosensitizer is reported. This approach only requires a source of visible light and a green solvent at room temperature to produce the medicinally privileged scaffolds of hydrazinyl-thiazole derivatives in good to outstanding yields. Experimental studies support the in situ formation of a visible-light-absorbing, photosensitized colored ternary EDA complex. The next step is to prepare a pair of radicals in an excited state, which makes it easier to prepare thiazole derivatives through a SET and PCET process. DFT calculations additionally supported the mechanistic analysis of the course of the reaction. The antioxidant and antidiabetic properties of some of the compounds in the synthesized library were tested in vitro . All the investigated compounds demonstrated appreciable antioxidant activity, as evidenced by the reducing power experiment and the IC 50 values of the DPPH radical scavenging experiment. Furthermore, the IC 50 values for 4c , 4d , and 4g also demonstrated a strong α-amylase inhibitory effect. A visible-light-induced synthesis of 2-(2-hydrazinyl)thiazole and its antioxidant and antidiabetic therapeutic potential were evaluated.
Bibliography:Electronic supplementary information (ESI) available. CCDC
For ESI and crystallographic data in CIF or other electronic format see DOI
2130891-2130893
https://doi.org/10.1039/d2ob02308c
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1477-0520
1477-0539
DOI:10.1039/d2ob02308c