Stability and bifurcation analysis of a discrete-time host-parasitoid model with Holling III functional response
We study the dynamical properties of a discrete-time host-parasitoid model with Holling type III functional response. It is shown that flip bifurcation and Neimark-Sacker bifurcation occur in certain parameter regimes. A sufficient condition based on the model parameters for which both populations c...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 10; pp. 22675 - 22692 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the dynamical properties of a discrete-time host-parasitoid model with Holling type III functional response. It is shown that flip bifurcation and Neimark-Sacker bifurcation occur in certain parameter regimes. A sufficient condition based on the model parameters for which both populations can coexist is derived. The boundedness, existence and local stability of the unique equilibrium are proved. In addition, the numerical simulations have been done, in addition to supporting the analytical findings, more behaviors are extracted from the model in a two-dimensional parameter space. Finally, we emphasize the importance of clearly presenting biological assumptions that are inherent to the structure of a discrete model. |
---|---|
AbstractList | We study the dynamical properties of a discrete-time host-parasitoid model with Holling type III functional response. It is shown that flip bifurcation and Neimark-Sacker bifurcation occur in certain parameter regimes. A sufficient condition based on the model parameters for which both populations can coexist is derived. The boundedness, existence and local stability of the unique equilibrium are proved. In addition, the numerical simulations have been done, in addition to supporting the analytical findings, more behaviors are extracted from the model in a two-dimensional parameter space. Finally, we emphasize the importance of clearly presenting biological assumptions that are inherent to the structure of a discrete model. |
Author | Liu, Yun Liu, Xijuan |
Author_xml | – sequence: 1 givenname: Xijuan surname: Liu fullname: Liu, Xijuan organization: College of Information Engineering, Tarim University, Alar, Xinjiang 843300, China, Key Laboratory of Tarim Oasis Agricaluture (Tarim University) Ministry of Education, Alar, Xinjiang 843300, China – sequence: 2 givenname: Yun surname: Liu fullname: Liu, Yun organization: College of Information Engineering, Tarim University, Alar, Xinjiang 843300, China, Key Laboratory of Tarim Oasis Agricaluture (Tarim University) Ministry of Education, Alar, Xinjiang 843300, China |
BookMark | eNpN0LtOwzAUgGELFQkoHdn9AgHfEjsjQkAjITEAc3Qc-1CjJK5sI9S3p-UmpnMZvuE_I4s5zp6QC84uZSvV1QRlcymYkJzX6oicCqVl1bTGLP7tJ2SV8xtjTHChhFanZPtUwIYxlB2F2VEb8D0NUEKc9zeMuxwyjUiBupCH5IuvSpg83cRcqi0kyKHE4OgUnR_pRygbuo7jGOZX2nUdxfd5OFgw0uTzNs7Zn5NjhDH71c9ckpe72-ebdfXweN_dXD9Ug5S6VAKltZZZKYAP3BqhmMFa6halthrQGgnGeougmxaxMa1jTlhtGy65RJBL0n27LsJbv01hgrTrI4T-6xHTaw-phGH0_YBgvGW1RmWUq9E48EKgMNwqpXS9t6pva0gx5-Txz-OsP9TvD_X73_ryE57wfKU |
Cites_doi | 10.1016/j.chaos.2006.10.002 10.3934/math.2022187 10.1038/255058a0 10.3934/math.2021194 10.1155/2016/3989625 10.1007/s10910-018-0976-4 10.1186/s13662-018-1476-3 10.1142/S0218339007002325 10.1007/s11071-017-3381-9 10.1016/j.cam.2022.114666 10.1016/j.amc.2010.02.014 10.3390/fractalfract6010031 10.1088/1674-1056/22/8/080202 10.1016/j.jde.2019.10.036 10.1186/s13662-019-2430-8 10.1016/j.ecolmodel.2021.109656 10.1002/asjc.1809 10.1016/j.jmaa.2005.04.036 10.1051/mmnp/2020042 10.1016/S0960-0779(01)00063-7 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.20231154 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 22692 |
ExternalDocumentID | oai_doaj_org_article_cfa8eb057f484d5f8dae22f281b44475 10_3934_math_20231154 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c337t-2f3bbb0b32a1c1b82408f5379f37b7afb83a8bebfa769ff689d0d2b7b61313fa3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:30:42 EDT 2025 Tue Jul 01 03:57:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-2f3bbb0b32a1c1b82408f5379f37b7afb83a8bebfa769ff689d0d2b7b61313fa3 |
OpenAccessLink | https://doaj.org/article/cfa8eb057f484d5f8dae22f281b44475 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cfa8eb057f484d5f8dae22f281b44475 crossref_primary_10_3934_math_20231154 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.20231154-16 key-10.3934/math.20231154-15 key-10.3934/math.20231154-18 key-10.3934/math.20231154-17 key-10.3934/math.20231154-12 key-10.3934/math.20231154-11 key-10.3934/math.20231154-22 key-10.3934/math.20231154-14 key-10.3934/math.20231154-13 key-10.3934/math.20231154-19 key-10.3934/math.20231154-4 key-10.3934/math.20231154-5 key-10.3934/math.20231154-6 key-10.3934/math.20231154-7 key-10.3934/math.20231154-1 key-10.3934/math.20231154-2 key-10.3934/math.20231154-3 key-10.3934/math.20231154-10 key-10.3934/math.20231154-21 key-10.3934/math.20231154-20 key-10.3934/math.20231154-8 key-10.3934/math.20231154-9 |
References_xml | – ident: key-10.3934/math.20231154-2 doi: 10.1016/j.chaos.2006.10.002 – ident: key-10.3934/math.20231154-20 doi: 10.3934/math.2022187 – ident: key-10.3934/math.20231154-1 doi: 10.1038/255058a0 – ident: key-10.3934/math.20231154-11 doi: 10.3934/math.2021194 – ident: key-10.3934/math.20231154-6 doi: 10.1155/2016/3989625 – ident: key-10.3934/math.20231154-22 doi: 10.1007/s10910-018-0976-4 – ident: key-10.3934/math.20231154-17 doi: 10.1186/s13662-018-1476-3 – ident: key-10.3934/math.20231154-8 doi: 10.1142/S0218339007002325 – ident: key-10.3934/math.20231154-19 doi: 10.1007/s11071-017-3381-9 – ident: key-10.3934/math.20231154-12 doi: 10.1016/j.cam.2022.114666 – ident: key-10.3934/math.20231154-15 – ident: key-10.3934/math.20231154-10 doi: 10.1016/j.amc.2010.02.014 – ident: key-10.3934/math.20231154-18 doi: 10.3390/fractalfract6010031 – ident: key-10.3934/math.20231154-14 – ident: key-10.3934/math.20231154-21 doi: 10.1088/1674-1056/22/8/080202 – ident: key-10.3934/math.20231154-5 doi: 10.1016/j.jde.2019.10.036 – ident: key-10.3934/math.20231154-7 doi: 10.1186/s13662-019-2430-8 – ident: key-10.3934/math.20231154-4 doi: 10.1016/j.ecolmodel.2021.109656 – ident: key-10.3934/math.20231154-3 doi: 10.1002/asjc.1809 – ident: key-10.3934/math.20231154-16 doi: 10.1016/j.jmaa.2005.04.036 – ident: key-10.3934/math.20231154-9 doi: 10.1051/mmnp/2020042 – ident: key-10.3934/math.20231154-13 doi: 10.1016/S0960-0779(01)00063-7 |
SSID | ssj0002124274 |
Score | 2.2065747 |
Snippet | We study the dynamical properties of a discrete-time host-parasitoid model with Holling type III functional response. It is shown that flip bifurcation and... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 22675 |
SubjectTerms | boundedness host-parasitoid model mode-locking structures neimark-sacker bifurcation |
Title | Stability and bifurcation analysis of a discrete-time host-parasitoid model with Holling III functional response |
URI | https://doaj.org/article/cfa8eb057f484d5f8dae22f281b44475 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09a8MwEBUlUzuUftL0Cw2lm0hkyZY8tqUhKaRTA9mMzpIgSxKcZOi_752VhHTq0tHGGHEn3713Pr1j7MnXNaY9q4WUBQidBSWsjbmQhbehRtYs2ykK489iONEf03x6MOqLesKSPHAyXK-OzgZAVBG11T6P1ruQZTFDuKVJrI6iL-a8AzJFMRgDska-lUQ1Val0D_Ef_XvISF1G_0pCB1r9bVIZnLHTLRrkL2kV5-wozC_YyXgvpbq6ZEuEg20D6zdH0s9hFjdNKrPhdRIU4YvIHafztQ1CYEHj4jkd3hCk673CT3bmeTvxhlPVlQ-TDjcfjUac0lqqBvImdcuGKzYZvH-9DcV2TIKolTJrkUUFAH1QmZO1BEuiZTFXpozKgHERrHIWAkRnijLGwpa-7zMwgJlcqujUNevMF_Nww7hBcJIHK7V0QecenDfSIUemZjZVun6XPe_sVi2TGkaFLIIMXJGBq52Bu-yVrLp_iESs2xvo2mrr2uov197-x0vu2DEtKlVN7lln3WzCA-KINTy2W-YHmlDIeQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+bifurcation+analysis+of+a+discrete-time+host-parasitoid+model+with+Holling+III+functional+response&rft.jtitle=AIMS+mathematics&rft.au=Liu%2C+Xijuan&rft.au=Liu%2C+Yun&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=10&rft.spage=22675&rft.epage=22692&rft_id=info:doi/10.3934%2Fmath.20231154&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20231154 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |