Stability and bifurcation analysis of a discrete-time host-parasitoid model with Holling III functional response

We study the dynamical properties of a discrete-time host-parasitoid model with Holling type III functional response. It is shown that flip bifurcation and Neimark-Sacker bifurcation occur in certain parameter regimes. A sufficient condition based on the model parameters for which both populations c...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 10; pp. 22675 - 22692
Main Authors Liu, Xijuan, Liu, Yun
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the dynamical properties of a discrete-time host-parasitoid model with Holling type III functional response. It is shown that flip bifurcation and Neimark-Sacker bifurcation occur in certain parameter regimes. A sufficient condition based on the model parameters for which both populations can coexist is derived. The boundedness, existence and local stability of the unique equilibrium are proved. In addition, the numerical simulations have been done, in addition to supporting the analytical findings, more behaviors are extracted from the model in a two-dimensional parameter space. Finally, we emphasize the importance of clearly presenting biological assumptions that are inherent to the structure of a discrete model.
AbstractList We study the dynamical properties of a discrete-time host-parasitoid model with Holling type III functional response. It is shown that flip bifurcation and Neimark-Sacker bifurcation occur in certain parameter regimes. A sufficient condition based on the model parameters for which both populations can coexist is derived. The boundedness, existence and local stability of the unique equilibrium are proved. In addition, the numerical simulations have been done, in addition to supporting the analytical findings, more behaviors are extracted from the model in a two-dimensional parameter space. Finally, we emphasize the importance of clearly presenting biological assumptions that are inherent to the structure of a discrete model.
Author Liu, Yun
Liu, Xijuan
Author_xml – sequence: 1
  givenname: Xijuan
  surname: Liu
  fullname: Liu, Xijuan
  organization: College of Information Engineering, Tarim University, Alar, Xinjiang 843300, China, Key Laboratory of Tarim Oasis Agricaluture (Tarim University) Ministry of Education, Alar, Xinjiang 843300, China
– sequence: 2
  givenname: Yun
  surname: Liu
  fullname: Liu, Yun
  organization: College of Information Engineering, Tarim University, Alar, Xinjiang 843300, China, Key Laboratory of Tarim Oasis Agricaluture (Tarim University) Ministry of Education, Alar, Xinjiang 843300, China
BookMark eNpN0LtOwzAUgGELFQkoHdn9AgHfEjsjQkAjITEAc3Qc-1CjJK5sI9S3p-UmpnMZvuE_I4s5zp6QC84uZSvV1QRlcymYkJzX6oicCqVl1bTGLP7tJ2SV8xtjTHChhFanZPtUwIYxlB2F2VEb8D0NUEKc9zeMuxwyjUiBupCH5IuvSpg83cRcqi0kyKHE4OgUnR_pRygbuo7jGOZX2nUdxfd5OFgw0uTzNs7Zn5NjhDH71c9ckpe72-ebdfXweN_dXD9Ug5S6VAKltZZZKYAP3BqhmMFa6halthrQGgnGeougmxaxMa1jTlhtGy65RJBL0n27LsJbv01hgrTrI4T-6xHTaw-phGH0_YBgvGW1RmWUq9E48EKgMNwqpXS9t6pva0gx5-Txz-OsP9TvD_X73_ryE57wfKU
Cites_doi 10.1016/j.chaos.2006.10.002
10.3934/math.2022187
10.1038/255058a0
10.3934/math.2021194
10.1155/2016/3989625
10.1007/s10910-018-0976-4
10.1186/s13662-018-1476-3
10.1142/S0218339007002325
10.1007/s11071-017-3381-9
10.1016/j.cam.2022.114666
10.1016/j.amc.2010.02.014
10.3390/fractalfract6010031
10.1088/1674-1056/22/8/080202
10.1016/j.jde.2019.10.036
10.1186/s13662-019-2430-8
10.1016/j.ecolmodel.2021.109656
10.1002/asjc.1809
10.1016/j.jmaa.2005.04.036
10.1051/mmnp/2020042
10.1016/S0960-0779(01)00063-7
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.20231154
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 22692
ExternalDocumentID oai_doaj_org_article_cfa8eb057f484d5f8dae22f281b44475
10_3934_math_20231154
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c337t-2f3bbb0b32a1c1b82408f5379f37b7afb83a8bebfa769ff689d0d2b7b61313fa3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:30:42 EDT 2025
Tue Jul 01 03:57:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-2f3bbb0b32a1c1b82408f5379f37b7afb83a8bebfa769ff689d0d2b7b61313fa3
OpenAccessLink https://doaj.org/article/cfa8eb057f484d5f8dae22f281b44475
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_cfa8eb057f484d5f8dae22f281b44475
crossref_primary_10_3934_math_20231154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20231154-16
key-10.3934/math.20231154-15
key-10.3934/math.20231154-18
key-10.3934/math.20231154-17
key-10.3934/math.20231154-12
key-10.3934/math.20231154-11
key-10.3934/math.20231154-22
key-10.3934/math.20231154-14
key-10.3934/math.20231154-13
key-10.3934/math.20231154-19
key-10.3934/math.20231154-4
key-10.3934/math.20231154-5
key-10.3934/math.20231154-6
key-10.3934/math.20231154-7
key-10.3934/math.20231154-1
key-10.3934/math.20231154-2
key-10.3934/math.20231154-3
key-10.3934/math.20231154-10
key-10.3934/math.20231154-21
key-10.3934/math.20231154-20
key-10.3934/math.20231154-8
key-10.3934/math.20231154-9
References_xml – ident: key-10.3934/math.20231154-2
  doi: 10.1016/j.chaos.2006.10.002
– ident: key-10.3934/math.20231154-20
  doi: 10.3934/math.2022187
– ident: key-10.3934/math.20231154-1
  doi: 10.1038/255058a0
– ident: key-10.3934/math.20231154-11
  doi: 10.3934/math.2021194
– ident: key-10.3934/math.20231154-6
  doi: 10.1155/2016/3989625
– ident: key-10.3934/math.20231154-22
  doi: 10.1007/s10910-018-0976-4
– ident: key-10.3934/math.20231154-17
  doi: 10.1186/s13662-018-1476-3
– ident: key-10.3934/math.20231154-8
  doi: 10.1142/S0218339007002325
– ident: key-10.3934/math.20231154-19
  doi: 10.1007/s11071-017-3381-9
– ident: key-10.3934/math.20231154-12
  doi: 10.1016/j.cam.2022.114666
– ident: key-10.3934/math.20231154-15
– ident: key-10.3934/math.20231154-10
  doi: 10.1016/j.amc.2010.02.014
– ident: key-10.3934/math.20231154-18
  doi: 10.3390/fractalfract6010031
– ident: key-10.3934/math.20231154-14
– ident: key-10.3934/math.20231154-21
  doi: 10.1088/1674-1056/22/8/080202
– ident: key-10.3934/math.20231154-5
  doi: 10.1016/j.jde.2019.10.036
– ident: key-10.3934/math.20231154-7
  doi: 10.1186/s13662-019-2430-8
– ident: key-10.3934/math.20231154-4
  doi: 10.1016/j.ecolmodel.2021.109656
– ident: key-10.3934/math.20231154-3
  doi: 10.1002/asjc.1809
– ident: key-10.3934/math.20231154-16
  doi: 10.1016/j.jmaa.2005.04.036
– ident: key-10.3934/math.20231154-9
  doi: 10.1051/mmnp/2020042
– ident: key-10.3934/math.20231154-13
  doi: 10.1016/S0960-0779(01)00063-7
SSID ssj0002124274
Score 2.2065747
Snippet We study the dynamical properties of a discrete-time host-parasitoid model with Holling type III functional response. It is shown that flip bifurcation and...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 22675
SubjectTerms boundedness
host-parasitoid model
mode-locking structures
neimark-sacker bifurcation
Title Stability and bifurcation analysis of a discrete-time host-parasitoid model with Holling III functional response
URI https://doaj.org/article/cfa8eb057f484d5f8dae22f281b44475
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09a8MwEBUlUzuUftL0Cw2lm0hkyZY8tqUhKaRTA9mMzpIgSxKcZOi_752VhHTq0tHGGHEn3713Pr1j7MnXNaY9q4WUBQidBSWsjbmQhbehRtYs2ykK489iONEf03x6MOqLesKSPHAyXK-OzgZAVBG11T6P1ruQZTFDuKVJrI6iL-a8AzJFMRgDska-lUQ1Val0D_Ef_XvISF1G_0pCB1r9bVIZnLHTLRrkL2kV5-wozC_YyXgvpbq6ZEuEg20D6zdH0s9hFjdNKrPhdRIU4YvIHafztQ1CYEHj4jkd3hCk673CT3bmeTvxhlPVlQ-TDjcfjUac0lqqBvImdcuGKzYZvH-9DcV2TIKolTJrkUUFAH1QmZO1BEuiZTFXpozKgHERrHIWAkRnijLGwpa-7zMwgJlcqujUNevMF_Nww7hBcJIHK7V0QecenDfSIUemZjZVun6XPe_sVi2TGkaFLIIMXJGBq52Bu-yVrLp_iESs2xvo2mrr2uov197-x0vu2DEtKlVN7lln3WzCA-KINTy2W-YHmlDIeQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+bifurcation+analysis+of+a+discrete-time+host-parasitoid+model+with+Holling+III+functional+response&rft.jtitle=AIMS+mathematics&rft.au=Liu%2C+Xijuan&rft.au=Liu%2C+Yun&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=10&rft.spage=22675&rft.epage=22692&rft_id=info:doi/10.3934%2Fmath.20231154&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20231154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon