Stability and bifurcation analysis of a discrete-time host-parasitoid model with Holling III functional response
We study the dynamical properties of a discrete-time host-parasitoid model with Holling type III functional response. It is shown that flip bifurcation and Neimark-Sacker bifurcation occur in certain parameter regimes. A sufficient condition based on the model parameters for which both populations c...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 10; pp. 22675 - 22692 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We study the dynamical properties of a discrete-time host-parasitoid model with Holling type III functional response. It is shown that flip bifurcation and Neimark-Sacker bifurcation occur in certain parameter regimes. A sufficient condition based on the model parameters for which both populations can coexist is derived. The boundedness, existence and local stability of the unique equilibrium are proved. In addition, the numerical simulations have been done, in addition to supporting the analytical findings, more behaviors are extracted from the model in a two-dimensional parameter space. Finally, we emphasize the importance of clearly presenting biological assumptions that are inherent to the structure of a discrete model. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.20231154 |