Wide-temperature-range multispectral camouflage enabled by orientation-gradient co-optimized microwave blackbody metastructure coupled with conformal MXene coating

Cloaking against electromagnetic detection is a well-researched topic; yet achieving multispectral camouflage over a wide temperature range remains challenging. Herein, an orientation-gradient co-optimized graded Gyroid-shellular (GGS) SiOC-based metastructure with a conformal MXene coating (M@SiOC)...

Full description

Saved in:
Bibliographic Details
Published inMaterials horizons Vol. 1; no. 9; pp. 344 - 3415
Main Authors Yao, Li, Pan, Longkai, Zhou, Shixiang, Liu, Hongxia, Mei, Hui, Li, Yang, Dassios, Konstantinos G, Colombo, Paolo, Cheng, Laifei, Zhang, Litong
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 29.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cloaking against electromagnetic detection is a well-researched topic; yet achieving multispectral camouflage over a wide temperature range remains challenging. Herein, an orientation-gradient co-optimized graded Gyroid-shellular (GGS) SiOC-based metastructure with a conformal MXene coating (M@SiOC) is proposed to achieve wide-temperature-range microwave/infrared/visible-light-compatible camouflage. Firstly, the combination of coordinate transformation and genetic algorithm endows the GGS architecture with optimal orientation and gradient, allowing superior microwave blackbody-like behavior. Secondly, a microwave-transparent, low-infrared-emissivity MXene metasurface is constructed in situ to permit wide-temperature-range infrared camouflage. Finally, the outstanding spectral selectivity of MXene enables camouflage against 1.06 μm-lidar and visible-light detection. As a result, the as-fabricated [110]-oriented GGS M@SiOC metamaterials exhibit outstanding wide-temperature-range multispectral camouflage: (i) ultrabroadband microwave absorption exceeding 80% in the X-Ku band from room temperature (RT) to 500 °C with absorption above 86.0% (91.4% on average) at 500 °C; (ii) excellent long-wavelength infrared camouflage for object temperatures from RT to 450 °C, reaching an infrared signal intensity of 78.5% for objects at 450 °C; and (iii) camouflage against both 1.06 μm-lidar and dark environment. Compared with traditional hierarchical metamaterials necessitating complex micro/nano-fabrication processes, this work provides a novel pathway toward the realization of structurally integrated multispectral stealth components by combining flexible metastructure design and high-fidelity additive manufacturing. An orientation-gradient co-optimized graded Gyroid-shellular (GGS) SiOC-based metastructure with conformal MXene coating (MXene@SiOC) is proposed to achieve wide-temperature-range microwave/infrared/1.06 μm-laser/visible-light-compatible camouflage.
Bibliography:https://doi.org/10.1039/d3mh00611e
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2051-6347
2051-6355
DOI:10.1039/d3mh00611e