On the Decoding of Shoulder Joint Intent of Motion From Transient EMG: Feature Evaluation and Classification

Motion intent detection for shoulder actions may allow the early decoding of upper limb motions, thus enhancing the real-time usability of rehabilitative devices and prosthetics. In this study we faced a motion intent detection problem involving four shoulder movements by using transient epochs of s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical robotics and bionics Vol. 5; no. 4; pp. 1037 - 1044
Main Authors Tigrini, Andrea, Verdini, Federica, Fioretti, Sandro, Mengarelli, Alessandro
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motion intent detection for shoulder actions may allow the early decoding of upper limb motions, thus enhancing the real-time usability of rehabilitative devices and prosthetics. In this study we faced a motion intent detection problem involving four shoulder movements by using transient epochs of surface electromyographic (EMG) signals. Reliability of time and frequency domain features was investigated through clusters separability properties and classification performances. Those features able to provide accuracy greater than 90% were selected and further investigated by a holdout scheme, i.e., decreasing the amount of data for training the learning models (60%, 50%, 40%, and 30%). Key findings of the study are as follows. Firstly, single-feature approach appeared suitable for early decoding shoulder movements, thus supporting reduced recording setup. Time domain features related to the instantaneous variations of signal amplitude produced the best results but frequency domain features showed comparable performances, suggesting no favored domain for feature extraction. Eventually, autoregressive coefficients suffered from a reduced amount of data used for training. Outcomes of this study can support the design of myoelectric control schemes, based on transient EMG data, for driving shoulder joint assistive devices.
AbstractList Motion intent detection for shoulder actions may allow the early decoding of upper limb motions, thus enhancing the real-time usability of rehabilitative devices and prosthetics. In this study we faced a motion intent detection problem involving four shoulder movements by using transient epochs of surface electromyographic (EMG) signals. Reliability of time and frequency domain features was investigated through clusters separability properties and classification performances. Those features able to provide accuracy greater than 90% were selected and further investigated by a holdout scheme, i.e., decreasing the amount of data for training the learning models (60%, 50%, 40%, and 30%). Key findings of the study are as follows. Firstly, single-feature approach appeared suitable for early decoding shoulder movements, thus supporting reduced recording setup. Time domain features related to the instantaneous variations of signal amplitude produced the best results but frequency domain features showed comparable performances, suggesting no favored domain for feature extraction. Eventually, autoregressive coefficients suffered from a reduced amount of data used for training. Outcomes of this study can support the design of myoelectric control schemes, based on transient EMG data, for driving shoulder joint assistive devices.
Author Fioretti, Sandro
Mengarelli, Alessandro
Tigrini, Andrea
Verdini, Federica
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0002-1600-2137
  surname: Tigrini
  fullname: Tigrini, Andrea
  email: a.tigrini@staff.univpm.it
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 2
  givenname: Federica
  orcidid: 0000-0003-4252-3224
  surname: Verdini
  fullname: Verdini, Federica
  email: f.verdini@staff.univpm.it
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 3
  givenname: Sandro
  orcidid: 0000-0002-7783-3065
  surname: Fioretti
  fullname: Fioretti, Sandro
  email: s.fioretti@staff.univpm.it
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 4
  givenname: Alessandro
  orcidid: 0000-0002-6087-6763
  surname: Mengarelli
  fullname: Mengarelli, Alessandro
  email: a.mengarelli@staff.univpm.it
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
BookMark eNp9UE1PAjEUbAwmIvIDTDw08bzYD7ZdvCkCYiAkiudNd9tKydJi2zXx37sLHIwHT_M-Zt7kzSXoWGcVANcYDTBGo7v18vVxQBChA0obYOgMdEnKWdJ2nV_1BeiHsEUIEZwiTlkXVCsL40bBJ1U6aewHdBq-bVxdSeXhizM2wrmNqoFmsXTROAun3u3g2gsbTLuYLGf3cKpErL2Cky9R1eJAE1bCcSVCMNqUh9EVONeiCqp_wh54n07W4-dksZrNxw-LpKSUxwRrnI4wkbLINMEs00gQLYcpRyllZYaLgjGFeEYKOmSESMWlpKngWJK0zDijPXB7vLv37rNWIeZbV3vbWOYkyzjGmNC0YeEjq_QuBK90vvdmJ_x3jlHe5pq3ueZtrvkp10bD_2hKEw-_RS9M9a_y5qg0SqlfToQxTjL6A19BhiM
CODEN ITMRBT
CitedBy_id crossref_primary_10_3390_s24175828
crossref_primary_10_3390_app15031324
crossref_primary_10_3390_s25010113
crossref_primary_10_1016_j_compbiomed_2024_109169
crossref_primary_10_1016_j_patrec_2025_02_008
crossref_primary_10_3390_s24102985
crossref_primary_10_3389_fbioe_2024_1492588
crossref_primary_10_3390_s24103225
crossref_primary_10_3390_s24092702
crossref_primary_10_1038_s41598_024_82519_z
crossref_primary_10_3390_machines12020124
crossref_primary_10_3390_s24113638
crossref_primary_10_3390_bioengineering11050458
crossref_primary_10_1016_j_heliyon_2024_e33133
crossref_primary_10_1109_ACCESS_2024_3436710
Cites_doi 10.32098/mltj.02.2014.21
10.1016/j.clinbiomech.2005.06.004
10.1109/ACCESS.2019.2906584
10.1109/JSEN.2018.2813434
10.1097/00007632-199710010-00003
10.3389/fnbot.2022.880073
10.3390/s21030763
10.1109/TNSRE.2005.850423
10.1109/TNSRE.2016.2560906
10.1109/EMBC.2018.8512638
10.1109/TNSRE.2019.2961706
10.1109/ACCESS.2020.3019776
10.1109/TNSRE.2019.2955029
10.1109/TNSRE.2022.3156269
10.1109/TBME.2019.2935182
10.1109/EMBC.2015.7318804
10.1109/TNSRE.2022.3218430
10.1109/TNSRE.2014.2305520
10.1016/j.eswa.2012.01.102
10.1002/9781119546405
10.1109/TMRB.2020.3014517
10.1186/1743-0003-8-25
10.3109/03093640409167756
10.1109/TMECH.2020.2999532
10.1109/LRA.2021.3111850
10.3390/app10207144
10.1302/2058-5241.5.200006
10.1109/TNSRE.2020.2979743
10.1109/TNSRE.2020.3029873
10.1109/TMRB.2021.3135704
10.1109/TII.2020.3041618
10.1088/0967-3334/24/2/307
10.1016/j.neunet.2014.03.010
10.1186/s12984-019-0512-1
10.3390/s20226451
10.1007/s43154-020-00015-4
10.1016/j.apmr.2019.02.003
10.1186/1743-0003-10-75
10.3389/fnbot.2019.00031
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
8FD
K9.
L7M
DOI 10.1109/TMRB.2023.3320260
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-3202
EndPage 1044
ExternalDocumentID 10_1109_TMRB_2023_3320260
10266728
Genre orig-research
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
K9.
L7M
ID FETCH-LOGICAL-c337t-1f15912ddb8f2168f0a2fd4570536c81bb66e0782b34622de7dd35a71d25c8763
IEDL.DBID RIE
ISSN 2576-3202
IngestDate Mon Jun 30 03:50:19 EDT 2025
Tue Jul 01 02:51:47 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Wed Aug 27 02:35:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-1f15912ddb8f2168f0a2fd4570536c81bb66e0782b34622de7dd35a71d25c8763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6087-6763
0000-0002-1600-2137
0000-0003-4252-3224
0000-0002-7783-3065
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10266728
PQID 2887111235
PQPubID 4437212
PageCount 8
ParticipantIDs ieee_primary_10266728
proquest_journals_2887111235
crossref_citationtrail_10_1109_TMRB_2023_3320260
crossref_primary_10_1109_TMRB_2023_3320260
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on medical robotics and bionics
PublicationTitleAbbrev TMRB
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
gini (ref27) 2018
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref18
  doi: 10.32098/mltj.02.2014.21
– ident: ref20
  doi: 10.1016/j.clinbiomech.2005.06.004
– ident: ref5
  doi: 10.1109/ACCESS.2019.2906584
– ident: ref16
  doi: 10.1109/JSEN.2018.2813434
– ident: ref19
  doi: 10.1097/00007632-199710010-00003
– ident: ref34
  doi: 10.3389/fnbot.2022.880073
– ident: ref33
  doi: 10.3390/s21030763
– ident: ref6
  doi: 10.1109/TNSRE.2005.850423
– ident: ref39
  doi: 10.1109/TNSRE.2016.2560906
– ident: ref37
  doi: 10.1109/EMBC.2018.8512638
– ident: ref30
  doi: 10.1109/TNSRE.2019.2961706
– ident: ref32
  doi: 10.1109/ACCESS.2020.3019776
– ident: ref12
  doi: 10.1109/TNSRE.2019.2955029
– ident: ref38
  doi: 10.1109/TNSRE.2022.3156269
– ident: ref8
  doi: 10.1109/TBME.2019.2935182
– ident: ref35
  doi: 10.1109/EMBC.2015.7318804
– ident: ref22
  doi: 10.1109/TNSRE.2022.3218430
– ident: ref9
  doi: 10.1109/TNSRE.2014.2305520
– ident: ref24
  doi: 10.1016/j.eswa.2012.01.102
– year: 2018
  ident: ref27
  publication-title: semg shoulder
– ident: ref31
  doi: 10.1002/9781119546405
– ident: ref1
  doi: 10.1109/TMRB.2020.3014517
– ident: ref21
  doi: 10.1186/1743-0003-8-25
– ident: ref36
  doi: 10.3109/03093640409167756
– ident: ref10
  doi: 10.1109/TMECH.2020.2999532
– ident: ref28
  doi: 10.1109/LRA.2021.3111850
– ident: ref4
  doi: 10.3390/app10207144
– ident: ref17
  doi: 10.1302/2058-5241.5.200006
– ident: ref11
  doi: 10.1109/TNSRE.2020.2979743
– ident: ref26
  doi: 10.1109/TNSRE.2020.3029873
– ident: ref3
  doi: 10.1109/TMRB.2021.3135704
– ident: ref23
  doi: 10.1109/TII.2020.3041618
– ident: ref25
  doi: 10.1088/0967-3334/24/2/307
– ident: ref29
  doi: 10.1016/j.neunet.2014.03.010
– ident: ref14
  doi: 10.1186/s12984-019-0512-1
– ident: ref2
  doi: 10.3390/s20226451
– ident: ref40
  doi: 10.1007/s43154-020-00015-4
– ident: ref15
  doi: 10.1016/j.apmr.2019.02.003
– ident: ref7
  doi: 10.1186/1743-0003-10-75
– ident: ref13
  doi: 10.3389/fnbot.2019.00031
SSID ssj0002150736
Score 2.3522015
Snippet Motion intent detection for shoulder actions may allow the early decoding of upper limb motions, thus enhancing the real-time usability of rehabilitative...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1037
SubjectTerms Classification
Electromyography
Feature extraction
Frequency domain analysis
Human computer interaction
human-machine interface
Indexes
Joints
Motion estimation
Motion intent detection
Motion perception
Myoelectric control
Myoelectricity
Pattern recognition
Prostheses
Shoulder
shoulder joint
Training
Transient analysis
Title On the Decoding of Shoulder Joint Intent of Motion From Transient EMG: Feature Evaluation and Classification
URI https://ieeexplore.ieee.org/document/10266728
https://www.proquest.com/docview/2887111235
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-4nfTg58TplBw8Ca1p0jadNz82RaiCH7BbaZoUxdnK7C4e_NvNS7spiuKtpEkI_JK8X5L33g9gXzEk9Vw4lOrQ8TNNnTSVfUd4qdKCRZEfYTRyfBVe3PuXo2DUBKvbWBittXU-0y5-2rd8VWZTvCozK9yYE9NBC1rm5FYHa80vVBhSGx42L5ce7R_exTcnLsqDuxxVwm0Wyk_bY8VUfuzA1qwMV-BqNqDam-TJnVbSzd6-5Wr894hXYbkhmOS4nhFrsKCLdVj6knZwA8bXBTG8j5yZoyeaLlLm5PYBta71hFyWj0VFrGd7hT9iK_NDhpPymVjDhgGUZBCfHxGkj9OJJoN5xnCSFopYnU30QLJFHbgfDu5OL5xGdcHJOBeV4-WG4XhMKRnlzAujnKYsV34gzHINM8NyZRhqJBaS-yFjBlGleJAKT7Egw_x2m9AuykJvAeEikqaRQFbh04z1c9O5NhzGo9KXLOoCneGRZE1KclTGGCf2aEL7CUKYIIRJA2EXDuZNXup8HH9V7iAkXyrWaHShN0M9aZbsa2LmpTAbP-PB9i_NdmARe68jEXvQriZTvWsoSSX3oBW_D_bshPwAKGfcuQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ROFAOLVAQW7584FQpqWMncdIbLbsssNlK7SJxi-LYEQhIUEgu_fX1ONntqqiotyixHUvP9jzbM_MAThRDUs-FQ6kOHT_X1MkyGTvCy5QWLIr8CKORk2k4vvYvb4KbPljdxsJora3zmXbx0d7lqypv8ajMzHBjTkwDb2DNGP7A68K1FkcqDMkND_u7S4_Gn2fJj68uCoS7HHXCbR7KP9bHyqm8WIOtYRm9h-m8S50_yb3bNtLNf_2VrfG_-7wJ73qKSU67MbEFK7rcho2lxIMf4OF7SQzzI2dm84nGi1QF-XmLate6JpfVXdkQ69ve4IfECv2QUV09EmvaMISSDJPzLwQJZFtrMlzkDCdZqYhV2kQfJPtqB65Hw9m3sdPrLjg556JxvMJwHI8pJaOCeWFU0IwVyg-EmbBhbniuDEON1EJyP2TMYKoUDzLhKRbkmOFuF1bLqtR7QLiIpKkkkFf4NGdxYRrXhsV4VPqSRQOgczzSvE9KjtoYD6ndnNA4RQhThDDtIRzAp0WVpy4jx2uFdxCSpYIdGgM4mKOe9pP2OTUjU5iln_Hg4z-qHcP6eJZM0snF9Gof3uKfurjEA1ht6lYfGoLSyCM7LH8DnRLe0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Decoding+of+Shoulder+Joint+Intent+of+Motion+From+Transient+EMG%3A+Feature+Evaluation+and+Classification&rft.jtitle=IEEE+transactions+on+medical+robotics+and+bionics&rft.au=Tigrini%2C+Andrea&rft.au=Verdini%2C+Federica&rft.au=Fioretti%2C+Sandro&rft.au=Mengarelli%2C+Alessandro&rft.date=2023-11-01&rft.pub=IEEE&rft.eissn=2576-3202&rft.volume=5&rft.issue=4&rft.spage=1037&rft.epage=1044&rft_id=info:doi/10.1109%2FTMRB.2023.3320260&rft.externalDocID=10266728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3202&client=summon