On the Decoding of Shoulder Joint Intent of Motion From Transient EMG: Feature Evaluation and Classification
Motion intent detection for shoulder actions may allow the early decoding of upper limb motions, thus enhancing the real-time usability of rehabilitative devices and prosthetics. In this study we faced a motion intent detection problem involving four shoulder movements by using transient epochs of s...
Saved in:
Published in | IEEE transactions on medical robotics and bionics Vol. 5; no. 4; pp. 1037 - 1044 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motion intent detection for shoulder actions may allow the early decoding of upper limb motions, thus enhancing the real-time usability of rehabilitative devices and prosthetics. In this study we faced a motion intent detection problem involving four shoulder movements by using transient epochs of surface electromyographic (EMG) signals. Reliability of time and frequency domain features was investigated through clusters separability properties and classification performances. Those features able to provide accuracy greater than 90% were selected and further investigated by a holdout scheme, i.e., decreasing the amount of data for training the learning models (60%, 50%, 40%, and 30%). Key findings of the study are as follows. Firstly, single-feature approach appeared suitable for early decoding shoulder movements, thus supporting reduced recording setup. Time domain features related to the instantaneous variations of signal amplitude produced the best results but frequency domain features showed comparable performances, suggesting no favored domain for feature extraction. Eventually, autoregressive coefficients suffered from a reduced amount of data used for training. Outcomes of this study can support the design of myoelectric control schemes, based on transient EMG data, for driving shoulder joint assistive devices. |
---|---|
AbstractList | Motion intent detection for shoulder actions may allow the early decoding of upper limb motions, thus enhancing the real-time usability of rehabilitative devices and prosthetics. In this study we faced a motion intent detection problem involving four shoulder movements by using transient epochs of surface electromyographic (EMG) signals. Reliability of time and frequency domain features was investigated through clusters separability properties and classification performances. Those features able to provide accuracy greater than 90% were selected and further investigated by a holdout scheme, i.e., decreasing the amount of data for training the learning models (60%, 50%, 40%, and 30%). Key findings of the study are as follows. Firstly, single-feature approach appeared suitable for early decoding shoulder movements, thus supporting reduced recording setup. Time domain features related to the instantaneous variations of signal amplitude produced the best results but frequency domain features showed comparable performances, suggesting no favored domain for feature extraction. Eventually, autoregressive coefficients suffered from a reduced amount of data used for training. Outcomes of this study can support the design of myoelectric control schemes, based on transient EMG data, for driving shoulder joint assistive devices. |
Author | Fioretti, Sandro Mengarelli, Alessandro Tigrini, Andrea Verdini, Federica |
Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0002-1600-2137 surname: Tigrini fullname: Tigrini, Andrea email: a.tigrini@staff.univpm.it organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 2 givenname: Federica orcidid: 0000-0003-4252-3224 surname: Verdini fullname: Verdini, Federica email: f.verdini@staff.univpm.it organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 3 givenname: Sandro orcidid: 0000-0002-7783-3065 surname: Fioretti fullname: Fioretti, Sandro email: s.fioretti@staff.univpm.it organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 4 givenname: Alessandro orcidid: 0000-0002-6087-6763 surname: Mengarelli fullname: Mengarelli, Alessandro email: a.mengarelli@staff.univpm.it organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy |
BookMark | eNp9UE1PAjEUbAwmIvIDTDw08bzYD7ZdvCkCYiAkiudNd9tKydJi2zXx37sLHIwHT_M-Zt7kzSXoWGcVANcYDTBGo7v18vVxQBChA0obYOgMdEnKWdJ2nV_1BeiHsEUIEZwiTlkXVCsL40bBJ1U6aewHdBq-bVxdSeXhizM2wrmNqoFmsXTROAun3u3g2gsbTLuYLGf3cKpErL2Cky9R1eJAE1bCcSVCMNqUh9EVONeiCqp_wh54n07W4-dksZrNxw-LpKSUxwRrnI4wkbLINMEs00gQLYcpRyllZYaLgjGFeEYKOmSESMWlpKngWJK0zDijPXB7vLv37rNWIeZbV3vbWOYkyzjGmNC0YeEjq_QuBK90vvdmJ_x3jlHe5pq3ueZtrvkp10bD_2hKEw-_RS9M9a_y5qg0SqlfToQxTjL6A19BhiM |
CODEN | ITMRBT |
CitedBy_id | crossref_primary_10_3390_s24175828 crossref_primary_10_3390_app15031324 crossref_primary_10_3390_s25010113 crossref_primary_10_1016_j_compbiomed_2024_109169 crossref_primary_10_1016_j_patrec_2025_02_008 crossref_primary_10_3390_s24102985 crossref_primary_10_3389_fbioe_2024_1492588 crossref_primary_10_3390_s24103225 crossref_primary_10_3390_s24092702 crossref_primary_10_1038_s41598_024_82519_z crossref_primary_10_3390_machines12020124 crossref_primary_10_3390_s24113638 crossref_primary_10_3390_bioengineering11050458 crossref_primary_10_1016_j_heliyon_2024_e33133 crossref_primary_10_1109_ACCESS_2024_3436710 |
Cites_doi | 10.32098/mltj.02.2014.21 10.1016/j.clinbiomech.2005.06.004 10.1109/ACCESS.2019.2906584 10.1109/JSEN.2018.2813434 10.1097/00007632-199710010-00003 10.3389/fnbot.2022.880073 10.3390/s21030763 10.1109/TNSRE.2005.850423 10.1109/TNSRE.2016.2560906 10.1109/EMBC.2018.8512638 10.1109/TNSRE.2019.2961706 10.1109/ACCESS.2020.3019776 10.1109/TNSRE.2019.2955029 10.1109/TNSRE.2022.3156269 10.1109/TBME.2019.2935182 10.1109/EMBC.2015.7318804 10.1109/TNSRE.2022.3218430 10.1109/TNSRE.2014.2305520 10.1016/j.eswa.2012.01.102 10.1002/9781119546405 10.1109/TMRB.2020.3014517 10.1186/1743-0003-8-25 10.3109/03093640409167756 10.1109/TMECH.2020.2999532 10.1109/LRA.2021.3111850 10.3390/app10207144 10.1302/2058-5241.5.200006 10.1109/TNSRE.2020.2979743 10.1109/TNSRE.2020.3029873 10.1109/TMRB.2021.3135704 10.1109/TII.2020.3041618 10.1088/0967-3334/24/2/307 10.1016/j.neunet.2014.03.010 10.1186/s12984-019-0512-1 10.3390/s20226451 10.1007/s43154-020-00015-4 10.1016/j.apmr.2019.02.003 10.1186/1743-0003-10-75 10.3389/fnbot.2019.00031 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD K9. L7M |
DOI | 10.1109/TMRB.2023.3320260 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-3202 |
EndPage | 1044 |
ExternalDocumentID | 10_1109_TMRB_2023_3320260 10266728 |
Genre | orig-research |
GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE JAVBF M~E OCL RIA RIE AAYXX CITATION 7SP 8FD K9. L7M |
ID | FETCH-LOGICAL-c337t-1f15912ddb8f2168f0a2fd4570536c81bb66e0782b34622de7dd35a71d25c8763 |
IEDL.DBID | RIE |
ISSN | 2576-3202 |
IngestDate | Mon Jun 30 03:50:19 EDT 2025 Tue Jul 01 02:51:47 EDT 2025 Thu Apr 24 23:12:00 EDT 2025 Wed Aug 27 02:35:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-1f15912ddb8f2168f0a2fd4570536c81bb66e0782b34622de7dd35a71d25c8763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6087-6763 0000-0002-1600-2137 0000-0003-4252-3224 0000-0002-7783-3065 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10266728 |
PQID | 2887111235 |
PQPubID | 4437212 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10266728 proquest_journals_2887111235 crossref_citationtrail_10_1109_TMRB_2023_3320260 crossref_primary_10_1109_TMRB_2023_3320260 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on medical robotics and bionics |
PublicationTitleAbbrev | TMRB |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 gini (ref27) 2018 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref18 doi: 10.32098/mltj.02.2014.21 – ident: ref20 doi: 10.1016/j.clinbiomech.2005.06.004 – ident: ref5 doi: 10.1109/ACCESS.2019.2906584 – ident: ref16 doi: 10.1109/JSEN.2018.2813434 – ident: ref19 doi: 10.1097/00007632-199710010-00003 – ident: ref34 doi: 10.3389/fnbot.2022.880073 – ident: ref33 doi: 10.3390/s21030763 – ident: ref6 doi: 10.1109/TNSRE.2005.850423 – ident: ref39 doi: 10.1109/TNSRE.2016.2560906 – ident: ref37 doi: 10.1109/EMBC.2018.8512638 – ident: ref30 doi: 10.1109/TNSRE.2019.2961706 – ident: ref32 doi: 10.1109/ACCESS.2020.3019776 – ident: ref12 doi: 10.1109/TNSRE.2019.2955029 – ident: ref38 doi: 10.1109/TNSRE.2022.3156269 – ident: ref8 doi: 10.1109/TBME.2019.2935182 – ident: ref35 doi: 10.1109/EMBC.2015.7318804 – ident: ref22 doi: 10.1109/TNSRE.2022.3218430 – ident: ref9 doi: 10.1109/TNSRE.2014.2305520 – ident: ref24 doi: 10.1016/j.eswa.2012.01.102 – year: 2018 ident: ref27 publication-title: semg shoulder – ident: ref31 doi: 10.1002/9781119546405 – ident: ref1 doi: 10.1109/TMRB.2020.3014517 – ident: ref21 doi: 10.1186/1743-0003-8-25 – ident: ref36 doi: 10.3109/03093640409167756 – ident: ref10 doi: 10.1109/TMECH.2020.2999532 – ident: ref28 doi: 10.1109/LRA.2021.3111850 – ident: ref4 doi: 10.3390/app10207144 – ident: ref17 doi: 10.1302/2058-5241.5.200006 – ident: ref11 doi: 10.1109/TNSRE.2020.2979743 – ident: ref26 doi: 10.1109/TNSRE.2020.3029873 – ident: ref3 doi: 10.1109/TMRB.2021.3135704 – ident: ref23 doi: 10.1109/TII.2020.3041618 – ident: ref25 doi: 10.1088/0967-3334/24/2/307 – ident: ref29 doi: 10.1016/j.neunet.2014.03.010 – ident: ref14 doi: 10.1186/s12984-019-0512-1 – ident: ref2 doi: 10.3390/s20226451 – ident: ref40 doi: 10.1007/s43154-020-00015-4 – ident: ref15 doi: 10.1016/j.apmr.2019.02.003 – ident: ref7 doi: 10.1186/1743-0003-10-75 – ident: ref13 doi: 10.3389/fnbot.2019.00031 |
SSID | ssj0002150736 |
Score | 2.3522015 |
Snippet | Motion intent detection for shoulder actions may allow the early decoding of upper limb motions, thus enhancing the real-time usability of rehabilitative... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1037 |
SubjectTerms | Classification Electromyography Feature extraction Frequency domain analysis Human computer interaction human-machine interface Indexes Joints Motion estimation Motion intent detection Motion perception Myoelectric control Myoelectricity Pattern recognition Prostheses Shoulder shoulder joint Training Transient analysis |
Title | On the Decoding of Shoulder Joint Intent of Motion From Transient EMG: Feature Evaluation and Classification |
URI | https://ieeexplore.ieee.org/document/10266728 https://www.proquest.com/docview/2887111235 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-4nfTg58TplBw8Ca1p0jadNz82RaiCH7BbaZoUxdnK7C4e_NvNS7spiuKtpEkI_JK8X5L33g9gXzEk9Vw4lOrQ8TNNnTSVfUd4qdKCRZEfYTRyfBVe3PuXo2DUBKvbWBittXU-0y5-2rd8VWZTvCozK9yYE9NBC1rm5FYHa80vVBhSGx42L5ce7R_exTcnLsqDuxxVwm0Wyk_bY8VUfuzA1qwMV-BqNqDam-TJnVbSzd6-5Wr894hXYbkhmOS4nhFrsKCLdVj6knZwA8bXBTG8j5yZoyeaLlLm5PYBta71hFyWj0VFrGd7hT9iK_NDhpPymVjDhgGUZBCfHxGkj9OJJoN5xnCSFopYnU30QLJFHbgfDu5OL5xGdcHJOBeV4-WG4XhMKRnlzAujnKYsV34gzHINM8NyZRhqJBaS-yFjBlGleJAKT7Egw_x2m9AuykJvAeEikqaRQFbh04z1c9O5NhzGo9KXLOoCneGRZE1KclTGGCf2aEL7CUKYIIRJA2EXDuZNXup8HH9V7iAkXyrWaHShN0M9aZbsa2LmpTAbP-PB9i_NdmARe68jEXvQriZTvWsoSSX3oBW_D_bshPwAKGfcuQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ROFAOLVAQW7584FQpqWMncdIbLbsssNlK7SJxi-LYEQhIUEgu_fX1ONntqqiotyixHUvP9jzbM_MAThRDUs-FQ6kOHT_X1MkyGTvCy5QWLIr8CKORk2k4vvYvb4KbPljdxsJora3zmXbx0d7lqypv8ajMzHBjTkwDb2DNGP7A68K1FkcqDMkND_u7S4_Gn2fJj68uCoS7HHXCbR7KP9bHyqm8WIOtYRm9h-m8S50_yb3bNtLNf_2VrfG_-7wJ73qKSU67MbEFK7rcho2lxIMf4OF7SQzzI2dm84nGi1QF-XmLate6JpfVXdkQ69ve4IfECv2QUV09EmvaMISSDJPzLwQJZFtrMlzkDCdZqYhV2kQfJPtqB65Hw9m3sdPrLjg556JxvMJwHI8pJaOCeWFU0IwVyg-EmbBhbniuDEON1EJyP2TMYKoUDzLhKRbkmOFuF1bLqtR7QLiIpKkkkFf4NGdxYRrXhsV4VPqSRQOgczzSvE9KjtoYD6ndnNA4RQhThDDtIRzAp0WVpy4jx2uFdxCSpYIdGgM4mKOe9pP2OTUjU5iln_Hg4z-qHcP6eJZM0snF9Gof3uKfurjEA1ht6lYfGoLSyCM7LH8DnRLe0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Decoding+of+Shoulder+Joint+Intent+of+Motion+From+Transient+EMG%3A+Feature+Evaluation+and+Classification&rft.jtitle=IEEE+transactions+on+medical+robotics+and+bionics&rft.au=Tigrini%2C+Andrea&rft.au=Verdini%2C+Federica&rft.au=Fioretti%2C+Sandro&rft.au=Mengarelli%2C+Alessandro&rft.date=2023-11-01&rft.pub=IEEE&rft.eissn=2576-3202&rft.volume=5&rft.issue=4&rft.spage=1037&rft.epage=1044&rft_id=info:doi/10.1109%2FTMRB.2023.3320260&rft.externalDocID=10266728 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3202&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3202&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3202&client=summon |