On the Decoding of Shoulder Joint Intent of Motion From Transient EMG: Feature Evaluation and Classification
Motion intent detection for shoulder actions may allow the early decoding of upper limb motions, thus enhancing the real-time usability of rehabilitative devices and prosthetics. In this study we faced a motion intent detection problem involving four shoulder movements by using transient epochs of s...
Saved in:
Published in | IEEE transactions on medical robotics and bionics Vol. 5; no. 4; pp. 1037 - 1044 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Motion intent detection for shoulder actions may allow the early decoding of upper limb motions, thus enhancing the real-time usability of rehabilitative devices and prosthetics. In this study we faced a motion intent detection problem involving four shoulder movements by using transient epochs of surface electromyographic (EMG) signals. Reliability of time and frequency domain features was investigated through clusters separability properties and classification performances. Those features able to provide accuracy greater than 90% were selected and further investigated by a holdout scheme, i.e., decreasing the amount of data for training the learning models (60%, 50%, 40%, and 30%). Key findings of the study are as follows. Firstly, single-feature approach appeared suitable for early decoding shoulder movements, thus supporting reduced recording setup. Time domain features related to the instantaneous variations of signal amplitude produced the best results but frequency domain features showed comparable performances, suggesting no favored domain for feature extraction. Eventually, autoregressive coefficients suffered from a reduced amount of data used for training. Outcomes of this study can support the design of myoelectric control schemes, based on transient EMG data, for driving shoulder joint assistive devices. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2576-3202 2576-3202 |
DOI: | 10.1109/TMRB.2023.3320260 |