Variability of M giant stars based on Kepler photometry: general characteristics
M giants are among the longest period pulsating stars which is why their studies were traditionally restricted to analyses of low-precision visual observations, and, more recently, accurate ground-based data. Here we present an overview of M giant variability on a wide range of time-scales (hours to...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 436; no. 2; pp. 1576 - 1587 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Oxford University Press
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | M giants are among the longest period pulsating stars which is why their studies were traditionally restricted to analyses of low-precision visual observations, and, more recently, accurate ground-based data. Here we present an overview of M giant variability on a wide range of time-scales (hours to years), based on the analysis of 13 quarters of Kepler long-cadence observations (one point per every 29.4 min), with a total time-span of over 1000 d. About two-thirds of the sample stars have been selected from the All Sky Automated Survey (ASAS)-North survey of the Kepler field, with the rest supplemented from a randomly chosen M giant control sample. We first describe the correction of the light curves from different quarters, which was found to be essential. We use Fourier analysis to calculate multiple frequencies for all stars in the sample. Over 50 stars show a relatively strong signal with a period equal to the Kepler-year and a characteristic phase dependence across the whole field of view. We interpret this as a so far unidentified systematic effect in the Kepler data. We discuss the presence of regular patterns in the distribution of multiple periodicities and amplitudes. In the period-amplitude plane we find that it is possible to distinguish between solar-like oscillations and larger amplitude pulsations which are characteristic for Mira/semiregular stars. This may indicate the region of the transition between two types of oscillations as we move upward along the giant branch. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stt1685 |