The Type Iα Inositol Polyphosphate 4-Phosphatase Generates and Terminates Phosphoinositide 3-Kinase Signals on Endosomes and the Plasma Membrane

Endosomal trafficking is regulated by the recruitment of effector proteins to phosphatidylinositol 3-phosphate [PtdIns(3)P] on early endosomes. At the plasma membrane, phosphatidylinositol-(3,4)-bisphosphate [PtdIns(3,4)P 2 ] binds the pleckstrin homology (PH) domain-containing proteins Akt and TAPP...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology of the cell Vol. 16; no. 5; pp. 2218 - 2233
Main Authors Ivetac, Ivan, Munday, Adam D., Kisseleva, Marina V., Zhang, Xiang-Ming, Luff, Susan, Tiganis, Tony, Whisstock, James C., Rowe, Tony, Majerus, Phillip W., Mitchell, Christina A.
Format Journal Article
LanguageEnglish
Published The American Society for Cell Biology 01.05.2005
Online AccessGet full text

Cover

Loading…
More Information
Summary:Endosomal trafficking is regulated by the recruitment of effector proteins to phosphatidylinositol 3-phosphate [PtdIns(3)P] on early endosomes. At the plasma membrane, phosphatidylinositol-(3,4)-bisphosphate [PtdIns(3,4)P 2 ] binds the pleckstrin homology (PH) domain-containing proteins Akt and TAPP1. Type Iα inositol polyphosphate 4-phosphatase (4-phosphatase) dephosphorylates PtdIns(3,4)P 2 , forming PtdIns(3)P, but its subcellular localization is unknown. We report here in quiescent cells, the 4-phosphatase colocalized with early and recycling endosomes. On growth factor stimulation, 4-phosphatase endosomal localization persisted, but in addition the 4-phosphatase localized at the plasma membrane. Overexpression of the 4-phosphatase in serum-stimulated cells increased cellular PtdIns(3)P levels and prevented wortmannin-induced endosomal dilatation. Furthermore, mouse embryonic fibroblasts from homozygous Weeble mice, which have a mutation in the type I 4-phosphatase, exhibited dilated early endosomes. 4-Phosphatase translocation to the plasma membrane upon growth factor stimulation inhibited the recruitment of the TAPP1 PH domain. The 4-phosphatase contains C2 domains, which bound PtdIns(3,4)P 2 , and C2-domain-deletion mutants lost PtdIns(3,4)P 2 4-phosphatase activity, did not localize to endosomes or inhibit TAPP1 PH domain membrane recruitment. The 4-phosphatase therefore both generates and terminates phosphoinositide 3-kinase signals at distinct subcellular locations.
Bibliography:This article was published online ahead of print in MBC in Press (http://www.molbiolcell.org/cgi/doi/10.1091/mbc.E04–09–0799) on February 16, 2005.
Address correspondence to: Christina A. Mitchell (christina.mitchell@med.monash.edu.au).
Abbreviations used: EEA, early endosomal antigen; 4-phosphatase, inositol polyphosphate 4-phosphatase; 5-phosphatase, inositol polyphosphate 5-phosphatase; MTOC, microtubule organizing center; PtdIns(3,4)P2, phosphatidylinositol (3,4)-bisphosphate; PtdIns3-P, phosphatidylinositol 3-phosphate; PI 3-kinase, phosphoinositide 3-kinase; PM, plasma membrane; TAPP1, tandem PH domain-containing protein-1.
ISSN:1059-1524
1939-4586
DOI:10.1091/mbc.e04-09-0799