High-Precision Feature Point Matching and Stereo-Depth Estimation Using Rotation-Invariant CNN

Stereo-matching has become essential in various industrial applications, including robotics, autonomous driving, and drone-based surveying. In the drone-based depth estimation, we captured images from two different positions and determined the corresponding points between them through stereo-matchin...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced computational intelligence and intelligent informatics Vol. 29; no. 3; pp. 547 - 558
Main Authors Anazawa, Makoto, Nobuhara, Hajime, Ohta, Nozomu
Format Journal Article
LanguageEnglish
Published Tokyo Fuji Technology Press Co. Ltd 20.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Stereo-matching has become essential in various industrial applications, including robotics, autonomous driving, and drone-based surveying. In the drone-based depth estimation, we captured images from two different positions and determined the corresponding points between them through stereo-matching. A longer distance between the two positions improves triangulation accuracy but makes stereo-matching difficult owing to the reduced image overlap. This limitation is inherent to previous methods, necessitating at least 50% image overlap to achieve only centimeter-level accuracy. Hence, we propose using stereo viewing with feature point matching, which allows for direct matching of points on the image. Our approach applies a novel rotation-invariant convolutional neural network (CNN) that extracts features more effectively in the presence of angular changes in a subject, surpassing the performance of previous CNN-based models. We evaluated our method using the HPatches dataset, which demonstrated an increase in feature point matching accuracy of up to 0.9%. In a practical stereo imaging setting, our method achieved a height estimation error of approximately 1.2 mm and height resolution of approximately 2.6 mm in image pairs with approximately 25% overlap under varying conditions. This performance confirms that the proposed approach effectively resolves the trade-off inherent to traditional stereo-matching techniques, particularly with regard to the challenging overlapping scenarios that these previous methods failed to account for. Consequently, this study substantially broadens the applicability and versatility of stereo-depth estimation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1343-0130
1883-8014
DOI:10.20965/jaciii.2025.p0547