Characteristics of locus coeruleus functional connectivity network in patients with comorbid migraine and insomnia

Background Migraine and insomnia are prevalent conditions that often co-occur, each exacerbating the other and substantially impacting the quality of life. The locus coeruleus (LC), a brainstem region responsible for norepinephrine synthesis, participates in pain modulation, sleep/wake cycles, and e...

Full description

Saved in:
Bibliographic Details
Published inJournal of headache and pain Vol. 25; no. 1; pp. 159 - 11
Main Authors Wang, Changlin, Chen, Sishi, Cheng, Zihan, Xia, Shiyong, Fei, Chang jun, Ye, Li, Gong, Liang, Xi, Chunhua, Wang, Yu
Format Journal Article
LanguageEnglish
Published Milan Springer Milan 27.09.2024
Springer Nature B.V
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background Migraine and insomnia are prevalent conditions that often co-occur, each exacerbating the other and substantially impacting the quality of life. The locus coeruleus (LC), a brainstem region responsible for norepinephrine synthesis, participates in pain modulation, sleep/wake cycles, and emotional regulation, rendering it a potential nexus in the comorbidity of migraine and insomnia. Disruptions in the LC-noradrenergic system have been hypothesized to contribute to the comorbidities of migraine and insomnia, although neuroimaging evidence in humans remains scarce. In this study, we aimed to investigate the intrinsic functional connectivity (FC) network of the LC in patients with comorbid migraine and subjective chronic insomnia and patients with migraine with no insomnia (MnI) using resting-state functional magnetic resonance imaging (rs-fMRI) and seed-based FC analyses. Methods In this cross-sectional study, 30 patients with comorbid migraine and chronic insomnia (MI), 30 patients with MnI, and 30 healthy controls (HCs) were enrolled. Participants underwent neuropsychological testing and rs-fMRI. The LC-FC network was constructed using seed-based voxel-wise FC analysis. To identify group differences in LC-FC networks, voxel-wise covariance analysis was conducted with sex and age as covariates. Subsequently, a partial correlation analysis was conducted to probe the clinical relevance of aberrant LC-FC in patients with MI and MnI. Results Except for the insomnia score, no other significant difference was detected in demographic characteristics and behavioral performance between the MI and MnI groups. Compared with HCs, patients with MI exhibited altered LC-FC in several brain regions, including the dorsomedial prefrontal cortex (DMPFC), anterior cerebellum, dorsolateral prefrontal cortex (DLPFC), thalamus, and parahippocampal gyrus (PHG). Lower FC between the LC and DLPFC was associated with greater insomnia severity, whereas higher FC between the LC and DMPFC was linked to longer migraine attack duration in the MI group. Conclusion Our findings reveal the presence of aberrant LC-FC networks in patients with MI, providing neuroimaging evidence of the interplay between these conditions. The identified LC-FC alterations may serve as potential targets for therapeutic interventions and highlight the importance of considering the LC-noradrenergic system in the management of MI.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1129-2377
1129-2369
1129-2377
DOI:10.1186/s10194-024-01877-1