Super-optimal CO2 reduces wheat yield in growth chamber and greenhouse environments

Seven growth chamber trials (six replicate trials using 0.035, 0.12, and 0.25% CO2 in air and one trial using 0.12, 0.80, and 2.0% CO2 in air) and three replicate greenhouse trials (0.035, 0.10, 0.18, 0.26, 0.50, and 1.0% CO2 in air) compare the effects of super-optimal CO2 on the seed yield, harves...

Full description

Saved in:
Bibliographic Details
Published inAdvances in space research Vol. 20; no. 10; pp. 1901 - 1904
Main Authors Grotenhuis, T, Reuveni, J, Bugbee, B
Format Journal Article
LanguageEnglish
Published England 01.01.1997
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Seven growth chamber trials (six replicate trials using 0.035, 0.12, and 0.25% CO2 in air and one trial using 0.12, 0.80, and 2.0% CO2 in air) and three replicate greenhouse trials (0.035, 0.10, 0.18, 0.26, 0.50, and 1.0% CO2 in air) compare the effects of super-optimal CO2 on the seed yield, harvest index, and vegetative growth rate of wheat (Triticum aestivum L. cvs. USU-Apogee and Veery-10). Plants in the growth chamber trials were grown hydroponically under fluorescent lamps, while the greenhouse trials were grown under sunlight and high pressure sodium lamps and in soilless media. Plants in the greenhouse trials responded similarly to those in the growth chamber trials; maximum yields occurred near 0.10 and 0.12% CO2 and decreased significantly thereafter. This research indicates that the toxic effects of elevated CO2 are not specific to only one environment and has important implications for the design of bio-regenerative life support systems in space, and for the future of terrestrial agriculture.
Bibliography:SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ISSN:0273-1177
DOI:10.1016/S0273-1177(97)00858-2