Sensitive and fast response ethanol chemical sensor based on as-grown Gd2O3 nanostructures
Well crystalline gadolinium oxide(Gd2O3) nanostructures were grown by annealing the hydrothermally as-prepared nanostructures without using any template. Microscopic studies of Gd2O3 nanostructures were recorded along the [111] direction due to the clearly resolved interplanar distance d(222)-0.31 n...
Saved in:
Published in | Journal of rare earths Vol. 33; no. 2; pp. 214 - 220 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Well crystalline gadolinium oxide(Gd2O3) nanostructures were grown by annealing the hydrothermally as-prepared nanostructures without using any template. Microscopic studies of Gd2O3 nanostructures were recorded along the [111] direction due to the clearly resolved interplanar distance d(222)-0.31 nm of the cubic crystal structure Gd2O3. Sensing mechanism of Gd2O3 as efficient electron mediator for the detection of ethanol was explored. As-fabricated sensor demonstrated the high-sensitivity of -0.266 μAm/M/cm2 with low detection limit(-52.2 μmol/L) and correlation coefficient(r^2, 0.618). To the best of our knowledge, this was the first report for the detection of ethanol using as-grown(at 1000 oC) Gd2O3 nanostructures by simple and reliable Ⅰ-Ⅴ technique and rapid assessment of the reaction kinetics(in the order of seconds). The low cost of the starting reagents and the simplicity of the synthetic route made it a promising chemical sensor for the detection of various toxic analytes, which are not environmentally safe. |
---|---|
Bibliography: | growth; Gd2O3; nanostructures; ethanol; Ⅰ-Ⅴ technique; chemical sensing; rare earths Well crystalline gadolinium oxide(Gd2O3) nanostructures were grown by annealing the hydrothermally as-prepared nanostructures without using any template. Microscopic studies of Gd2O3 nanostructures were recorded along the [111] direction due to the clearly resolved interplanar distance d(222)-0.31 nm of the cubic crystal structure Gd2O3. Sensing mechanism of Gd2O3 as efficient electron mediator for the detection of ethanol was explored. As-fabricated sensor demonstrated the high-sensitivity of -0.266 μAm/M/cm2 with low detection limit(-52.2 μmol/L) and correlation coefficient(r^2, 0.618). To the best of our knowledge, this was the first report for the detection of ethanol using as-grown(at 1000 oC) Gd2O3 nanostructures by simple and reliable Ⅰ-Ⅴ technique and rapid assessment of the reaction kinetics(in the order of seconds). The low cost of the starting reagents and the simplicity of the synthetic route made it a promising chemical sensor for the detection of various toxic analytes, which are not environmentally safe. 11-2788/TF |
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/S1002-0721(14)60405-1 |