Bindi: Affective Internet of Things to Combat Gender-Based Violence

The main research motivation of this article is the fight against gender-based violence and achieving gender equality from a technological perspective. The solution proposed in this work goes beyond currently existing panic buttons, needing to be manually operated by the victims under difficult circ...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 9; no. 21; pp. 21174 - 21193
Main Authors Miranda Calero, Jose A., Rituerto-Gonzalez, Esther, Luis-Mingueza, Clara, Canabal, Manuel F., Barcenas, Alberto Ramirez, Lanza-Gutierrez, Jose M., Pelaez-Moreno, Carmen, Lopez-Ongil, Celia
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The main research motivation of this article is the fight against gender-based violence and achieving gender equality from a technological perspective. The solution proposed in this work goes beyond currently existing panic buttons, needing to be manually operated by the victims under difficult circumstances. Instead, Bindi, our end-to-end autonomous multimodal system, relies on artificial intelligence methods to automatically identify violent situations, based on detecting fear-related emotions, and trigger a protection protocol, if necessary. To this end, Bindi integrates modern state-of-the-art technologies, such as the Internet of Bodies, affective computing, and cyber-physical systems, leveraging: 1) affective Internet of Things (IoT) with auditory and physiological commercial off-the-shelf smart sensors embedded in wearable devices; 2) hierarchical multisensorial information fusion; and 3) the edge-fog-cloud IoT architecture. This solution is evaluated using our own data set named WEMAC, a very recently collected and freely available collection of data comprising the auditory and physiological responses of 47 women to several emotions elicited by using a virtual reality environment. On this basis, this work provides an analysis of multimodal late fusion strategies to combine the physiological and speech data processing pipelines to identify the best intelligence engine strategy for Bindi. In particular, the best data fusion strategy reports an overall fear classification accuracy of 63.61% for a subject-independent approach. Both a power consumption study and an audio data processing pipeline to detect violent acoustic events complement this analysis. This research is intended as an initial multimodal baseline that facilitates further work with real-life elicited fear in women.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2327-4662
2327-4662
DOI:10.1109/JIOT.2022.3177256