Holistic cursive word recognition based on perceptual features
This work presents a holistic system for the off-line recognition of cursive words based on the extraction of perceptual features by means of convolution with templates of line segments. The method works directly on gray-level images to avoid losing information due to binarization. Features are repr...
Saved in:
Published in | Pattern recognition letters Vol. 28; no. 13; pp. 1600 - 1609 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.10.2007
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This work presents a holistic system for the off-line recognition of cursive words based on the extraction of perceptual features by means of convolution with templates of line segments. The method works directly on gray-level images to avoid losing information due to binarization. Features are represented spatially in order to preserve topological information which is well suited for recognition through convolutional neural networks. Moreover, our feature extraction method does not need to detect baselines to find ascenders and descenders. The system has been tested on small and medium vocabulary sizes demonstrating the feasibility of the proposed method. |
---|---|
ISSN: | 0167-8655 1872-7344 |
DOI: | 10.1016/j.patrec.2007.03.017 |