Decoupling the Influence of Wall Thinning and Cladding Thickness Variations in Pulsed Eddy Current Using Principal Component Analysis
Corrosion may develop and grow on steel pipes under layers of insulation and cladding. Inspection of the pipes through these protective layers is of paramount importance. Pulsed eddy current (PEC) is a primary non-destructive testing (NDT) technique candidate for this type of inspection as it requir...
Saved in:
Published in | IEEE sensors journal Vol. 21; no. 19; pp. 22011 - 22018 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Corrosion may develop and grow on steel pipes under layers of insulation and cladding. Inspection of the pipes through these protective layers is of paramount importance. Pulsed eddy current (PEC) is a primary non-destructive testing (NDT) technique candidate for this type of inspection as it requires no contact with the inspection material. To overcome the variability in PEC signals due to variations in the cladding thickness, a large measurement set is analysed in this paper using principal component analysis (PCA). The PCA approach decomposes the signal set into a number of uncorrelated variables that explain the maximum amount of the variance in the data set, in which, in this respect, efficiently separate the influences contributed by the difference in the material properties of cladding and pipe wall. The feasibility of using PCA to quantify simulated steel pipe wall independent of confounding cladding thickness variations is investigated. It is found that, with sufficient amount of data, the approach can effectively separate the influences contributed by the wall thickness variations from the cladding thickness variations. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2021.3100648 |