Influence of YTS addition on structural and electrical properties of PZT-based ceramics

Perovskite solid solution (1-x)Pb(Zr0.52Ti0.48)O3-xY(Ta1/2Sb1/2)O3 ceramics (abbreviated as PZT-YTS, where x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05) were synthesized by conventional solid state method. The phase structure, microstructure and corresponding electrical properties were studied. X-ray diff...

Full description

Saved in:
Bibliographic Details
Published inProcessing and Application of Ceramics Vol. 15; no. 3; pp. 279 - 287
Main Authors Djoudi, Yasmina, Kahoul, Fares, Hamzioui, Louanes, Guemache, Abderrezak
Format Journal Article
LanguageEnglish
Published University of Novi Sad 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Perovskite solid solution (1-x)Pb(Zr0.52Ti0.48)O3-xY(Ta1/2Sb1/2)O3 ceramics (abbreviated as PZT-YTS, where x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05) were synthesized by conventional solid state method. The phase structure, microstructure and corresponding electrical properties were studied. X-ray diffraction and Raman analyses show that tetragonal phase structure was obtained in all ceramics at room temperature. Scanning electron micrographs of the samples show uniform grain distribution and grain growth inhibition with the increase of doping content. The dielectric permittivity, dissipation factor, electromechanical coupling factor, Young modulus, mechanical quality factor, piezoelectric charge constant, actual density and piezoelectric voltage constant, for the ceramics with x = 0.04 were: ?r = 714.9, tan ? = 0.03345, KP = 0.635, Y = 10.528 ? 1010 N/m2, Qm = 622.254, d31 = 74.738 ? 10?12 C/N, ?a = 7.67 g/cm3 and g31 = 10.477 ? 10?3 m?V/N, respectively, which are optimal in comparison to other studied samples.
ISSN:1820-6131
2406-1034
DOI:10.2298/PAC2103279D