Sequencing of a calcitonin receptor-like receptor in salmon Oncorhynchus gorbuscha. Functional studies using the human receptor activity-modifying proteins

The calcitonin gene-related peptide (CGRP) receptor and adrenomedullin (ADM) receptor are generated by the concomitant expression of a calcitonin receptor-like receptor (CL receptor) and a specific receptor activity-modifying protein (RAMP) in mammals. We have identified the sequence encoding the sa...

Full description

Saved in:
Bibliographic Details
Published inGene Vol. 298; no. 2; pp. 203 - 210
Main Authors Pidoux, Elisabeth, Cressent, Michèle
Format Journal Article
LanguageEnglish
Published Netherlands 02.10.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The calcitonin gene-related peptide (CGRP) receptor and adrenomedullin (ADM) receptor are generated by the concomitant expression of a calcitonin receptor-like receptor (CL receptor) and a specific receptor activity-modifying protein (RAMP) in mammals. We have identified the sequence encoding the salmon CL receptor (sCL receptor) and studied its function after co-expression with the human RAMPs in Cos-7 cells. The potential open-reading frame encoded a 465-amino-acid protein which is 72% identical to the human CL receptor and 85.8% identical to the flounder CL receptor. Function was assessed by measuring the cyclic adenosine monophosphate (cAMP) produced by Cos-7 cells transiently transfected with recombinant vectors for the sCL receptor and human RAMP. Co-expression of the CL receptor and RAMP1, formed a CGRP receptor, as in mammals. This CGRP receptor responded to selective analogs as a type 1 CGRP receptor. Cells co-expressing the CL receptor and RAMP2 did not produce increased cAMP in response to human ADM. Cells co-expressing the CL receptor and RAMP3, produced such a response, as in mammals, indicating that the human ADM molecule is not the cause of the previous unresponsiveness. We suggest that the human RAMP2 molecule does not interact with the sCL receptor because of major differences in the sequences of the salmon CL receptor and the mammalian CL receptor. The availability of this receptor must allow to further study their structural basis. This identification of a non-mammalian CL receptor, and characterization of its function, give insight in the evolution of the CL receptor molecule.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0378-1119
DOI:10.1016/S0378-1119(02)00974-5