Functional analysis of the eyespot in Chlamydomonas reinhardtii mutant ey 627, mt (-)

The function of the eyespot in phototaxis of the flagellate green alga Chlamydomonas reinhardtii Dangeard was studied using quantitative reflection confocal laser scanning microscopy and photoelectric measurements. The reflective properties of the eyespot and the photoreceptor current of the C. rein...

Full description

Saved in:
Bibliographic Details
Published inPlanta Vol. 188; no. 4; p. 513
Main Authors Kreimer, G, Overländer, C, Sineshchekov, O A, Stolzis, H, Nultsch, W, Melkonian, M
Format Journal Article
LanguageEnglish
Published Germany 01.11.1992
Online AccessGet more information

Cover

Loading…
More Information
Summary:The function of the eyespot in phototaxis of the flagellate green alga Chlamydomonas reinhardtii Dangeard was studied using quantitative reflection confocal laser scanning microscopy and photoelectric measurements. The reflective properties of the eyespot and the photoreceptor current of the C. reinhardtii eyespot mutant ey 627, mt (-) were compared with those of Chlamydomonas strains possessing a well-developed eyespot. Under growth conditions in which strongly disorganized eyespots were observed in the mutant by electron microscopy, there was a significant reduction in the reflection intensity of the eyespot and in the amplitude ratio (500∶440 nm) of photoreceptor currents induced by flashes of 500- and 440-nm light in non-oriented cells. Photoelectrical responses of pre-oriented cells revealed that the latter effect is caused by an altered directional sensitivity of the antenna complex, whereas the functional state of the photoreceptor pigment is not strongly affected in mutant cells. Both the reflection intensity and the amplitude ratio of photoreceptor currents increased to the level of reference strains under conditions supporting the development of a well-organized eyespot in the mutant. Furthermore, incubation of the mutant with high concentrations of all-trans-retinal (10 μM), independent of whether carotenoid biosynthesis was inhibited or not, was found to increase the reflection intensity of the eyespot. An increase in the rate of photoorientation of the mutant occurred concomitant with the increase in the reflective properties of the mutant eyespot. These observations demonstrate the importance of an intact eyespot for interference reflection and absorption of phototactically active light, and thus for the directional sensitivity of the eyespot apparatus.
ISSN:0032-0935
DOI:10.1007/BF00197043