Distributed Fault-Tolerant Control of Large-Scale Systems: An Active Fault Diagnosis Approach

The paper proposes a methodology to effectively address the increasingly important problem of distributed fault-tolerant control for large-scale interconnected systems. The approach dealt with combines, in a holistic way, a distributed fault detection and isolation algorithm with a specific tube-bas...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control of network systems Vol. 7; no. 1; pp. 288 - 301
Main Authors Boem, Francesca, Gallo, Alexander J., Raimondo, Davide M., Parisini, Thomas
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The paper proposes a methodology to effectively address the increasingly important problem of distributed fault-tolerant control for large-scale interconnected systems. The approach dealt with combines, in a holistic way, a distributed fault detection and isolation algorithm with a specific tube-based model predictive control scheme. A distributed fault-tolerant control strategy is illustrated to guarantee overall stability and constraint satisfaction even after the occurrence of a fault. In particular, each subsystem is controlled and monitored by a local unit. The fault diagnosis component consists of a passive set-based fault detection algorithm and an active fault isolation one, yielding fault-isolability subject to local input and state constraints. The distributed active fault isolation module-thanks to a modification of the local inputs-allows to isolate the fault that has occurred, avoiding the usual drawback of controllers that possibly hide the effect of the faults. The Active Fault Isolation method is used as a decision support tool for the fault-tolerant control strategy after fault detection. The distributed design of the tube-based model predictive control allows the possible disconnection of faulty subsystems or the reconfiguration of local controllers after fault isolation. Simulation results on a well-known power network benchmark show the effectiveness of the proposed methodology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2325-5870
2372-2533
DOI:10.1109/TCNS.2019.2913557