Assessment of gadolinium and iodine concentrations in kidney stones and correlation with contrast agent exposure, stone matrix composition, and patient demographic factors

BACKGROUNDGadolinium-based contrast agents (GBCAs) and Iodinated contrast media are widely utilized to increase medical imaging sensitivity. With predominant renal elimination, the potential for the incorporation of contrast agent derived gadolinium and iodine into kidney stones remains largely unch...

Full description

Saved in:
Bibliographic Details
Published inJournal of trace elements in medicine and biology Vol. 73; p. 127022
Main Authors Day, Patrick L., Wermers, Michelle, Pazdernik, Vanessa, Bornhorst, Joshua, Jannetto, Paul J.
Format Journal Article
LanguageEnglish
Published 01.09.2022
Online AccessGet full text

Cover

Loading…
More Information
Summary:BACKGROUNDGadolinium-based contrast agents (GBCAs) and Iodinated contrast media are widely utilized to increase medical imaging sensitivity. With predominant renal elimination, the potential for the incorporation of contrast agent derived gadolinium and iodine into kidney stones remains largely uncharacterized. The study objective was to measure gadolinium and iodine concentrations within kidney stones. Observed elemental concentrations were correlated with prior contrast agent administration, kidney stone composition, age, gender, and smoking status. METHODSKidney stones from 96 patients were analyzed by Fourier Transform Infrared Spectroscopy to determine stone composition. Residual kidney stone material was digested and analyzed by Inductively Coupled Plasma Mass Spectrometry to determine gadolinium and iodine concentrations. Univariable and multivariable lognormal linear regression were performed to study the relationship between kidney stone element concentrations and contrast agent administration, kidney stone composition, age, gender, and smoking status. RESULTSMedian iodine and gadolinium stone concentrations were 6.4 (range 0.6-3997) and 0.1 (range ≤0.013-113.5) µg/g respectively. Elevated gadolinium was strongly associated with GBCA history with a hazard rate of 2.20 (95 % CI 1.14-3.25 P < 0.001). Gadolinium was positively associated with smoking, as well as stones comprised of apatite and calcium oxalate. Iodine concentrations were negatively associated with uric acid stones. CONCLUSIONGadolinium, but not iodine, concentrations in kidney stones was strongly correlated with contrast exposure history. Stone matrix composition and demographic factors, particularly smoking, can influence observed kidney stone elemental concentrations. Additional studies are needed to determine if exposure to gadolinium and iodine promote the formation of stone matrix and/or reflect exposure history.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0946-672X
1878-3252
DOI:10.1016/j.jtemb.2022.127022