Refinement of nano-Y2O3 on microstructure of hypereutectic Fe-Cr-C hardfacing coatings
The Fe-Cr-C flux-cored wires with 0 wt.%, 0.63 wt.%, 2.54 wt.% and 5.08 wt.% additions of nano-Y203 were developed in this work. And the different hypereutectic Fe-Cr-C hardfacing coatings were prepared. The phase structures of the coatings were determined by X-ray diffraction. The microstructures w...
Saved in:
Published in | Journal of rare earths Vol. 33; no. 6; pp. 671 - 678 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The Fe-Cr-C flux-cored wires with 0 wt.%, 0.63 wt.%, 2.54 wt.% and 5.08 wt.% additions of nano-Y203 were developed in this work. And the different hypereutectic Fe-Cr-C hardfacing coatings were prepared. The phase structures of the coatings were determined by X-ray diffraction. The microstructures were observed by optical microscopy. The morphologies of the hypereutectic Fe-Cr-C hardfacing coatings were observed by a field emission scanning electron microscope equipped with an X-ray energy disper- sive spectrometer. The effectiveness ofY203 as heterogeneous nuclei of primary M7C3 was calculated with the misfit theory. The ex- periment results showed that, the microstructures of the hypereutectic Fe-Cr-C hardfacing coatings consisted of M7C3, ?-Fe and a-Fe phases. With the increase of nano-Y203 additives, primary M7C3 in hypereutectic Fe-Cr-C coatings could be refined gradually. The average size of the primary M7C3 was the minimum, which was 22 pro, when nano-Y203 additive was 2.54 wt.%. The calculated re- sults showed that, the two-dimensional lattice misfit between the face (001) of Y203 and face (100) of orthorhombic M7C3 was 4.911%, which indicated that Y203 as heterogeneous nuclei of M7C3 was middle effective to refine the primary M7C3. |
---|---|
Bibliography: | 11-2788/TF The Fe-Cr-C flux-cored wires with 0 wt.%, 0.63 wt.%, 2.54 wt.% and 5.08 wt.% additions of nano-Y203 were developed in this work. And the different hypereutectic Fe-Cr-C hardfacing coatings were prepared. The phase structures of the coatings were determined by X-ray diffraction. The microstructures were observed by optical microscopy. The morphologies of the hypereutectic Fe-Cr-C hardfacing coatings were observed by a field emission scanning electron microscope equipped with an X-ray energy disper- sive spectrometer. The effectiveness ofY203 as heterogeneous nuclei of primary M7C3 was calculated with the misfit theory. The ex- periment results showed that, the microstructures of the hypereutectic Fe-Cr-C hardfacing coatings consisted of M7C3, ?-Fe and a-Fe phases. With the increase of nano-Y203 additives, primary M7C3 in hypereutectic Fe-Cr-C coatings could be refined gradually. The average size of the primary M7C3 was the minimum, which was 22 pro, when nano-Y203 additive was 2.54 wt.%. The calculated re- sults showed that, the two-dimensional lattice misfit between the face (001) of Y203 and face (100) of orthorhombic M7C3 was 4.911%, which indicated that Y203 as heterogeneous nuclei of M7C3 was middle effective to refine the primary M7C3. YUN Xiao , ZHOU Yefei , YANG Jian, XING XiaoleI, REN Xuejun YANG Yulin , YANG Qingxiang (1. State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China, 2. School of Engineering, Liverpool John Moores University, Liverpool L3 3AF, UK) nano-Y203; hypereutectic Fe-Cr-C coatings; primary M7C3, hardfacing misfit; rare earths |
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/S1002-0721(14)60469-5 |