Power Amplifiers With Frequency-Selective Matching Networks

In this article, we demonstrate a method for codesign of filtering matching networks for power amplifiers (PAs) with the desired frequency response, improved efficiency, and reduced footprint. The microwave transistor operates with high efficiency with a specific complex-impedance load, and this req...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 69; no. 1; pp. 697 - 708
Main Authors Estrada, Jose Antonio, Montejo-Garai, Jose R., de Paco, Pedro, Psychogiou, Dimitra, Popovic, Zoya
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, we demonstrate a method for codesign of filtering matching networks for power amplifiers (PAs) with the desired frequency response, improved efficiency, and reduced footprint. The microwave transistor operates with high efficiency with a specific complex-impedance load, and this requires the development of a theory for filter matching network design with arbitrary complex-impedance ports. The formulation is first developed and then applied to a simple second-order filter and a fourth-order filter with cross couplings and transmission zeros and verified in the experiment. A single-stage high-efficiency 4.7-GHz, 4-W hybrid GaN filter-PA (FPA) within a sub-6-GHz 5G band is designed, built, and characterized. The port impedances are determined by load- and source-pull for an efficiency-power tradeoff. The measured performance shows a gain of 15 dB, PAE = 55% with 9% fractional bandwidth, and 10-dB rejection at 4.5 and 5 GHz. Comparison with a cascaded PA-filter circuit shows a 25% lower loss with the same rejection and a reduced footprint with the same rejection. A GaAs monolithic microwave integrated circuit (MMIC) FPA at 28 GHz (millimeter-wave 5G FR2 band) is also designed and measured with a second-order output matching filter, demonstrating 8-dB gain, 200 mW of output power, and PAE = 30% with a rejection of 8 dB at 26.5 and 29.6 GHz.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2020.3020097