Variations of quantitative perfusion measurement on dynamic contrast enhanced CT for colorectal cancer: implication of standardized image protocol

Tumor angiogenesis is considered an important prognostic factor. With an increasing emphasis on imaging evaluation of the tumor microenvironment, dynamic contrast enhanced-computed tomography (DCE-CT) has evolved as an important functional technique in this setting. Yet many questions remain as to h...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 63; no. 16; p. 165009
Main Authors Niu, Tianye, Yang, Pengfei, Sun, Xiaonan, Mao, Tingyu, Xu, Lei, Yue, Ning, Kuang, Yu, Shi, Liming, Nie, Ke
Format Journal Article
LanguageEnglish
Published England IOP Publishing 10.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Tumor angiogenesis is considered an important prognostic factor. With an increasing emphasis on imaging evaluation of the tumor microenvironment, dynamic contrast enhanced-computed tomography (DCE-CT) has evolved as an important functional technique in this setting. Yet many questions remain as to how and when these functional measurements should be performed for each agent and tumor type, and what quantitative models should be used in the fitting process. In this study, we evaluated the variations of perfusion measurement on DCE-CT for rectal cancer patients from (1) different tracer kinetic models, (2) different scan acquisition lengths, and (3) different scan intervals. A total of seven commonly used models were studied: the adiabatic approximation to the tissue homogeneity (AATH) model, adiabatic approximation to the homogeneity tissue with fixed transit time (AATHFT) model, the Tofts model (TM), the extended Tofts model (ETM), Patlak model, Logan model, and the model-free deconvolution method. Akaike's information criterion was used to identify the best fitting model. The interchangeability of different models was further evaluated using Bland-Altman analysis. All models gave comparable blood volume (BV) measurements except the Patlak method. While for the volume transfer constant (Ktrans) estimation, AATHFT, AATH, and ETM generated reasonable agreement among each other but not for the other models. Regarding the blood flow (BF) measurement, no two models were interchangeable. In addition, the perfusion parameters were compared with four acquisition times (45, 65, 85, and 105 s) and four temporal intervals (1, 2, 3, and 4 s). No significant difference was observed in the volume transfer constant (Ktrans), BV, and BF measurements when comparing data acquired over 65 s with data acquired over 105 s using any of the DCE models in this study. Yet increasing the temporal interval led to a significant overestimation of BF in the deconvolution method. In conclusion, the perfusion measurement is indeed model dependent and the image acquisition/processing technique is dependent. The radiation dose of DCE-CT was an average of 1.5-2 times an abdomen/pelvic CT, which is not insubstantial. To take the DCE-CT forward as a biomarker in oncology, prospective studies should be carefully designed with the optimal image acquisition and analysis technique.
Bibliography:Institute of Physics and Engineering in Medicine
PMB-106289.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9155
1361-6560
1361-6560
DOI:10.1088/1361-6560/aacb99