Speciation of Manganese in a Synthetic Recycling Slag Relevant for Lithium Recycling from Lithium-Ion Batteries

Lithium aluminum oxide has previously been identified to be a suitable compound to recover lithium (Li) from Li-ion battery recycling slags. Its formation is hampered in the presence of high concentrations of manganese (9 wt.% MnO2). In this study, mock-up slags of the system Li2O-CaO-SiO2-Al2O3-MgO...

Full description

Saved in:
Bibliographic Details
Published inMetals (Basel ) Vol. 11; no. 2; p. 188
Main Authors Wittkowski, Alena, Schirmer, Thomas, Qiu, Hao, Goldmann, Daniel, Fittschen, Ursula E. A.
Format Journal Article
LanguageEnglish
Published MDPI AG 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lithium aluminum oxide has previously been identified to be a suitable compound to recover lithium (Li) from Li-ion battery recycling slags. Its formation is hampered in the presence of high concentrations of manganese (9 wt.% MnO2). In this study, mock-up slags of the system Li2O-CaO-SiO2-Al2O3-MgO-MnOx with up to 17 mol% MnO2-content were prepared. The manganese (Mn)-bearing phases were characterized with inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray diffraction (XRD), electron probe microanalysis (EPMA), and X-ray absorption near edge structure analysis (XANES). The XRD results confirm the decrease of LiAlO2 phases from Mn-poor slags (7 mol% MnO2) to Mn-rich slags (17 mol% MnO2). The Mn-rich grains are predominantly present as idiomorphic and relatively large (>50 µm) crystals. XRD, EPMA and XANES suggest that manganese is present in the form of a spinel solid solution. The absence of light elements besides Li and O allowed to estimate the Li content in the Mn-rich grain, and to determine a generic stoichiometry of the spinel solid solution, i.e., (Li(2x)Mn2+(1−x))1+x(Al(2−z),Mn3+z)O4. The coefficients x and z were determined at several locations of the grain. It is shown that the aluminum concentration decreases, while the manganese concentration increases from the start (x: 0.27; z: 0.54) to the end (x: 0.34; z: 1.55) of the crystallization.
ISSN:2075-4701
2075-4701
DOI:10.3390/met11020188