Refinements of Miller's algorithm for computing the Weil/Tate pairing
The efficient computation of the Weil and Tate pairings is of significant interest in the implementation of certain recently developed cryptographic protocols. The standard method of such computations has been the Miller algorithm. Three refinements to Miller's algorithm are given in this work....
Saved in:
Published in | Journal of algorithms Vol. 58; no. 2; pp. 134 - 149 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
San Diego, CA
Elsevier Inc
01.02.2006
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The efficient computation of the Weil and Tate pairings is of significant interest in the implementation of certain recently developed cryptographic protocols. The standard method of such computations has been the Miller algorithm. Three refinements to Miller's algorithm are given in this work. The first refinement is an overall improvement. If the binary expansion of the involved integer has relatively high Hamming weight, the second improvement suggested shows significant gains. The third improvement is especially efficient when the underlying elliptic curve is over a finite field of characteristic three, which is a case of particular cryptographic interest. Comment on the performance analysis and characteristics of the refinements are given. |
---|---|
ISSN: | 0196-6774 1090-2678 |
DOI: | 10.1016/j.jalgor.2005.01.009 |