CONV-SRAM: An Energy-Efficient SRAM With In-Memory Dot-Product Computation for Low-Power Convolutional Neural Networks
This paper presents an energy-efficient static random access memory (SRAM) with embedded dot-product computation capability, for binary-weight convolutional neural networks. A 10T bit-cell-based SRAM array is used to store the 1-b filter weights. The array implements dot-product as a weighted averag...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 54; no. 1; pp. 217 - 230 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents an energy-efficient static random access memory (SRAM) with embedded dot-product computation capability, for binary-weight convolutional neural networks. A 10T bit-cell-based SRAM array is used to store the 1-b filter weights. The array implements dot-product as a weighted average of the bitline voltages, which are proportional to the digital input values. Local integrating analog-to-digital converters compute the digital convolution outputs, corresponding to each filter. We have successfully demonstrated functionality (>98% accuracy) with the 10 000 test images in the MNIST hand-written digit recognition data set, using 6-b inputs/outputs. Compared to conventional full-digital implementations using small bitwidths, we achieve similar or better energy efficiency, by reducing data transfer, due to the highly parallel in-memory analog computations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2018.2880918 |