In-Ear EEG Biometrics for Feasible and Readily Collectable Real-World Person Authentication

The use of electroencephalogram (EEG) as a biometrics modality has been investigated for about a decade; however, its feasibility in real-world applications is not yet conclusively established, mainly due to the issues with collectability and reproducibility. To this end, we propose a readily deploy...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 13; no. 3; pp. 648 - 661
Main Authors Nakamura, Takashi, Goverdovsky, Valentin, Mandic, Danilo P.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The use of electroencephalogram (EEG) as a biometrics modality has been investigated for about a decade; however, its feasibility in real-world applications is not yet conclusively established, mainly due to the issues with collectability and reproducibility. To this end, we propose a readily deployable EEG biometrics system based on a "one-fits-all" viscoelastic generic in-ear EEG sensor (collectability), which does not require skilled assistance or cumbersome preparation. Unlike most existing studies, we consider data recorded over multiple recording days and for multiple subjects (reproducibility) while, for rigour, the training and test segments are not taken from the same recording days. A robust approach is considered based on the resting state with eyes closed paradigm, the use of both parametric (autoregressive model) and non-parametric (spectral) features, and supported by simple and fast cosine distance, linear discriminant analysis, and support vector machine classifiers. Both the verification and identification forensics scenarios are considered and the achieved results are on par with the studies based on impractical on-scalp recordings. Comprehensive analysis over a number of subjects, setups, and analysis features demonstrates the feasibility of the proposed ear-EEG biometrics, and its potential in resolving the critical collectability, robustness, and reproducibility issues associated with current EEG biometrics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1556-6013
1556-6021
DOI:10.1109/TIFS.2017.2763124