Air-Sea Coupled Data Assimilation Experiment for Typhoons Kilo, Etau and the September 2015 Kanto-Tohoku Heavy Rainfall with the Advanced Microwave Scanning Radiometer 2 Sea Surface Temperature
The September 2015 Kanto-Tohoku heavy rainfall event occurred in a stationary linear convective system between Typhoons Kilo and Etau. We investigated the influence of sea surface temperature (SST) on the local heavy rainfall event using a regional air-sea strongly coupled data assimilation system b...
Saved in:
Published in | Journal of the Meteorological Society of Japan Vol. 97; no. 3; pp. 553 - 575 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Meteorological Society of Japan
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The September 2015 Kanto-Tohoku heavy rainfall event occurred in a stationary linear convective system between Typhoons Kilo and Etau. We investigated the influence of sea surface temperature (SST) on the local heavy rainfall event using a regional air-sea strongly coupled data assimilation system based on the local ensemble transform Kalman filter (LETKF) and a nonhydrostatic atmosphere model (NHM) coupled with an ocean-surface wave model and a multilayer ocean model with an Advanced Microwave Scanning Radiometer 2 (AMSR2) level 2 (L2) SST product. From the validation of SST analyzed by the coupled data assimilation system with the Japanese geostationary multi-functional transport satellite 2 hourly SST product and in-situ observations at a moored buoy, we demonstrated that the coupled system with the AMSR2 L2 SST led to an improvement in the SST analysis. Based on the verification using radiosonde observations and radar-rain gauge rainfall analysis, the analysis of the lower-atmospheric components was improved by the air-sea coupled NHM-LETKF. The local torrential rainfall event that occurred around 37°N in the Tochigi prefecture was embedded in a stationary linear convective system. The location of the linear convective system corresponded to the synoptic-scale convergence area between the cyclonic circulation associated with Etau and easterly lower-tropospheric winds. Strong southerly winds associated with Etau caused a periodic enhancement of local convection along the convergence area on the upwind side of the linear convective system and resulted in a wave-like train of the total water content around an altitude of 4-8 km on the leeward side. The improvement of SST analysis could not only change the transition of Etau to the extratropical cyclone but also the lower-tropospheric wind field and thereby the location of the stationary linear convective system with embedded local torrential rain. |
---|---|
ISSN: | 0026-1165 2186-9057 |
DOI: | 10.2151/jmsj.2019-029 |