Air-Sea Coupled Data Assimilation Experiment for Typhoons Kilo, Etau and the September 2015 Kanto-Tohoku Heavy Rainfall with the Advanced Microwave Scanning Radiometer 2 Sea Surface Temperature

The September 2015 Kanto-Tohoku heavy rainfall event occurred in a stationary linear convective system between Typhoons Kilo and Etau. We investigated the influence of sea surface temperature (SST) on the local heavy rainfall event using a regional air-sea strongly coupled data assimilation system b...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Meteorological Society of Japan Vol. 97; no. 3; pp. 553 - 575
Main Authors WADA, Akiyoshi, TSUGUTI, Hiroshige, OKAMOTO, Kozo, SEINO, Naoko
Format Journal Article
LanguageEnglish
Published Meteorological Society of Japan 2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The September 2015 Kanto-Tohoku heavy rainfall event occurred in a stationary linear convective system between Typhoons Kilo and Etau. We investigated the influence of sea surface temperature (SST) on the local heavy rainfall event using a regional air-sea strongly coupled data assimilation system based on the local ensemble transform Kalman filter (LETKF) and a nonhydrostatic atmosphere model (NHM) coupled with an ocean-surface wave model and a multilayer ocean model with an Advanced Microwave Scanning Radiometer 2 (AMSR2) level 2 (L2) SST product. From the validation of SST analyzed by the coupled data assimilation system with the Japanese geostationary multi-functional transport satellite 2 hourly SST product and in-situ observations at a moored buoy, we demonstrated that the coupled system with the AMSR2 L2 SST led to an improvement in the SST analysis. Based on the verification using radiosonde observations and radar-rain gauge rainfall analysis, the analysis of the lower-atmospheric components was improved by the air-sea coupled NHM-LETKF. The local torrential rainfall event that occurred around 37°N in the Tochigi prefecture was embedded in a stationary linear convective system. The location of the linear convective system corresponded to the synoptic-scale convergence area between the cyclonic circulation associated with Etau and easterly lower-tropospheric winds. Strong southerly winds associated with Etau caused a periodic enhancement of local convection along the convergence area on the upwind side of the linear convective system and resulted in a wave-like train of the total water content around an altitude of 4-8 km on the leeward side. The improvement of SST analysis could not only change the transition of Etau to the extratropical cyclone but also the lower-tropospheric wind field and thereby the location of the stationary linear convective system with embedded local torrential rain.
ISSN:0026-1165
2186-9057
DOI:10.2151/jmsj.2019-029