Dynamic Aerial Base Station Placement for Minimum-Delay Communications
Queuing delay is of essential importance in the Internet-of-Things scenarios where the buffer sizes of devices are limited. The existing cross-layer research contributions aiming at minimizing the queuing delay usually rely on either transmit power control or dynamic spectrum allocation. Bearing in...
Saved in:
Published in | IEEE internet of things journal Vol. 8; no. 3; pp. 1623 - 1635 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2327-4662 2327-4662 |
DOI | 10.1109/JIOT.2020.3013752 |
Cover
Summary: | Queuing delay is of essential importance in the Internet-of-Things scenarios where the buffer sizes of devices are limited. The existing cross-layer research contributions aiming at minimizing the queuing delay usually rely on either transmit power control or dynamic spectrum allocation. Bearing in mind that the transmission throughput is dependent on the distance between the transmitter and the receiver, in this context we exploit the agility of the unmanned-aerial-vehicle (UAV)-mounted base stations (BSs) for proactively adjusting the aerial BS (ABS)'s placement in accordance with wireless teletraffic dynamics. Specifically, we formulate a minimum-delay ABS placement problem for UAV-enabled networks, subject to realistic constraints on the ABS's battery life and velocity. Its solutions are technically realized under three different assumptions in regard to the wireless teletraffic dynamics. The backward induction technique is invoked for both the scenario where the full knowledge of the wireless teletraffic dynamics is available, and for the case where only their statistical knowledge is available. In contrast, a reinforcement learning aided approach is invoked for the case when neither the exact number of arriving packets nor that of their statistical knowledge is available. The numerical results demonstrate that our proposed algorithms are capable of improving the system's performance compared to the benchmark schemes in terms of both the average delay and of the buffer overflow probability. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2327-4662 2327-4662 |
DOI: | 10.1109/JIOT.2020.3013752 |