Semi-Global State Synchronization for Multi-Agent Systems Subject to Actuator Saturation and Unknown Nonuniform Input Delay

The agent dynamics in a multi-agent system subject to both actuator saturation and unknown nonuniform input delay impose difficulty in the protocol design for all agents achieving state synchronization, although solutions can be found for agents with actuator saturation and for agents with input del...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 8; no. 1; pp. 488 - 497
Main Authors Zhang, Meirong, Saberi, Ali, A. Stoorvogel, Anton
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The agent dynamics in a multi-agent system subject to both actuator saturation and unknown nonuniform input delay impose difficulty in the protocol design for all agents achieving state synchronization, although solutions can be found for agents with actuator saturation and for agents with input delay. In this paper, we design a low-gain based protocol for each agent such that the protocol output (agents' inputs) can be squeezed enough and the saturation is not activated. Moreover, an upper bound of the input delay is obtained. This paper focuses on a class of agent systems, i.e. all agents' eigenvalues are in the closed left half plane (that is at most unstable agents), and topology describing the coupling among agents is undirected, but weighed. The numerical results with six agents coupled with full states and partial states illustrates the effectiveness of the proposed protocol design.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2327-4697
2334-329X
DOI:10.1109/TNSE.2020.3042752