Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function
We evaluate definite integrals of the form given by $\int_{0}^{\infty}R(a, x)\log (\cos (\alpha) \text{sech}(x)+1)dx$. The function $R(a, x)$ is a rational function with general complex number parameters. Definite integrals of this form yield closed forms for famous integrals in the books of Bierens...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 2; pp. 1324 - 1331 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2021082 |
Cover
Summary: | We evaluate definite integrals of the form given by $\int_{0}^{\infty}R(a, x)\log (\cos (\alpha) \text{sech}(x)+1)dx$. The function $R(a, x)$ is a rational function with general complex number parameters. Definite integrals of this form yield closed forms for famous integrals in the books of Bierens de Haan [4] and Gradshteyn and Ryzhik [ 5 ]. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2021082 |