On Flattenability of Graphs

We consider a generalization of the concept of d-flattenability of graphs - introduced for the l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin...

Full description

Saved in:
Bibliographic Details
Published inAutomated Deduction in Geometry Vol. 9201; pp. 129 - 148
Main Authors Sitharam, Meera, Willoughby, Joel
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2015
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider a generalization of the concept of d-flattenability of graphs - introduced for the l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_2$$\end{document} norm by Belk and Connelly - to general lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_p$$\end{document} norms, with integer P, 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le p < \infty $$\end{document}, though many of our results work for l∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_\infty $$\end{document} as well. The following results are shown for graphs G, using notions of genericity, rigidity, and generic d-dimensional rigidity matroid introduced by Kitson for frameworks in general lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_p$$\end{document} norms, as well as the cones of vectors of pairwise lpp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_p^p$$\end{document} distances of a finite point configuration in d-dimensional, lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_p$$\end{document} space: (i) d-flattenability of a graph G is equivalent to the convexity of d-dimensional, inherent Cayley configurations spaces for G, a concept introduced by the first author; (ii) d-flattenability and convexity of Cayley configuration spaces over specified non-edges of a d-dimensional framework are not generic properties of frameworks (in arbitrary dimension); (iii) d-flattenability of G is equivalent to all of G’s generic frameworks being d-flattenable; (iv) existence of one generic d-flattenable framework for G is equivalent to the independence of the edges of G, a generic property of frameworks; (v) the rank of G equals the dimension of the projection of the d-dimensional stratum of the lpp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_p^p$$\end{document} distance cone. We give stronger results for specific norms for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d = 2$$\end{document}: we show that (vi) 2-flattenable graphs for the l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-norm (and l∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_\infty $$\end{document}-norm) are a larger class than 2-flattenable graphs for Euclidean l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_2$$\end{document}-norm case and finally (vii) prove further results towards characterizing 2-flattenability in the l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-norm. A number of conjectures and open problems are posed.
Bibliography:M. Sitharam—This research was supported in part by the grant NSF CCF-1117695
ISBN:331921361X
9783319213613
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-21362-0_9