Methods for measuring pedestrian density, flow, speed and direction with minimal scatter
The progress of image processing during recent years allows the measurement of pedestrian characteristics on a “microscopic” scale with low costs. However, density and flow are concepts of fluid mechanics defined for the limit of infinitely many particles. Standard methods of measuring these quantit...
Saved in:
Published in | Physica A Vol. 389; no. 9; pp. 1902 - 1910 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The progress of image processing during recent years allows the measurement of pedestrian characteristics on a “microscopic” scale with low costs. However, density and flow are concepts of fluid mechanics defined for the limit of infinitely many particles. Standard methods of measuring these quantities locally (e.g. counting heads within a rectangle) suffer from large data scatter. The remedy of averaging over large spaces or long times reduces the possible resolution and inhibits the gain obtained by the new technologies.
In this contribution we introduce a concept for measuring microscopic characteristics on the basis of pedestrian trajectories. Assigning a personal space to every pedestrian via a Voronoi diagram reduces the density scatter. Similarly, calculating direction and speed from position differences between times with identical phases of movement gives low-scatter sequences for speed and direction. Finally we discuss the methods to obtain reliable values for derived quantities and new possibilities of an in-depth analysis of experiments. The resolution obtained indicates the limits of stationary state theory. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0378-4371 1873-2119 |
DOI: | 10.1016/j.physa.2009.12.015 |