An automatic temperature compensation of internal sense ground for subquarter micron DRAM's
This paper describes DRAM array driving techniques and the parameter scaling techniques for low voltage operation using the boosted sense ground (BSG) scheme and further improved methods. Temperature compensation and adjustable internal voltage levels maintain a small subthreshold leakage current fo...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 30; no. 4; pp. 471 - 479 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
New York, NY
IEEE
01.04.1995
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper describes DRAM array driving techniques and the parameter scaling techniques for low voltage operation using the boosted sense ground (BSG) scheme and further improved methods. Temperature compensation and adjustable internal voltage levels maintain a small subthreshold leakage current for a memory cell transistor (MC-Tr), and a distributed BSG (DBSG) scheme and a column decoded sensing (CDS) scheme achieve the effective scaling. These schemes can set the DRAM array free from the leakage current problem and the influence of temperature variations. Therefore, parameters for the MC-Tr, threshold voltage (V/sub th/), and the boosted voltage for the gate bias can be scaled down, and it is possible to determine the V/sub th/ of the MC-Tr simply (0.45 V at K=0.4) for the satisfaction of the small leakage current, for high speed and stable operation, and for high reliability (V/sub PP/ is below 2 V/sub CC/). They are applicable to subquarter micron DRAM's of 256 Mb and more.< > |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/4.375968 |