Generalized conformable operators: Application to the design of nonlinear observers
In this work, a pair of observers are proposed for a class of nonlinear systems whose dynamics involve a generalized differential operator that encompasses the conformable derivatives. A generalized conformable exponential stability function, based on this derivative, is introduced in order to prove...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 11; pp. 12952 - 12975 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this work, a pair of observers are proposed for a class of nonlinear systems whose dynamics involve a generalized differential operator that encompasses the conformable derivatives. A generalized conformable exponential stability function, based on this derivative, is introduced in order to prove some Lyapunov-like theorems. These theorems help to verify the stability of the observers proposed, which is exponential in a generalized sense. The performance of the observation scheme is evaluated by means of numerical simulations. Moreover, a comparison of the results obtained with integer, fractional, and generalized conformable derivatives is made. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2021749 |