Some aspects of generalized von Neumann-Jordan type constant

In recent times, Takahashi has introduced von Neumann-Jordan type constants $ C_{-\infty}(X) $. In the present manuscript, we establish a novel geometric constant $ C_{-\infty}(a, X) $ in a Banach space $ X $. Next, it is shown that $ \frac{1}{2}+\frac{2a}{4+a^2}\leqslant C_{-\infty}(a, X)\leqslant...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 6; pp. 6309 - 6321
Main Authors Liu, Qi, Din, Anwarud, Li, Yongjin
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021370

Cover

More Information
Summary:In recent times, Takahashi has introduced von Neumann-Jordan type constants $ C_{-\infty}(X) $. In the present manuscript, we establish a novel geometric constant $ C_{-\infty}(a, X) $ in a Banach space $ X $. Next, it is shown that $ \frac{1}{2}+\frac{2a}{4+a^2}\leqslant C_{-\infty}(a, X)\leqslant 1 $ for all $ a\geqslant0 $. Further, between the generalized James constant $ J(a, X) $ and $ C_{-\infty}(a, X) $, a relationship is investigated. For uniform normal structure, a few sufficient conditions were established. Finally, we investigate some relations between the two constants $ N(X) $ and $ C_{-\infty}(a, X) $.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2021370