RoVaLL: Design and Development of a Multi-Terrain Towed Robot With Variable Lug-Length Wheels

Robotic systems play a very important role in exploration, allowing us to reach places that would otherwise be unsafe or unreachable to humans, such as volcanic areas, disaster sites or unknown areas in other planets. As the area to be explored increases, so does the time it takes for robots to expl...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 5; no. 4; pp. 6017 - 6024
Main Authors Salazar Luces, Jose Victorio, Matsuzaki, Shin, Hirata, Yasuhisa
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Robotic systems play a very important role in exploration, allowing us to reach places that would otherwise be unsafe or unreachable to humans, such as volcanic areas, disaster sites or unknown areas in other planets. As the area to be explored increases, so does the time it takes for robots to explore it. One approach to reduce the required time is using multiple autonomous robots to perform distributed exploration. However, this significantly increases the associated cost and the complexity of the exploration process. To address these issues, in the past we proposed a leader-follower architecture where multiple two-wheeled passive robots capable of steering only using brakes are pulled by a leader robot. By controlling their relative angle with respect to the leader, the followers could move in arbitrary formations. The proposed follower robots used rubber tires, which allowed it to perform well in rigid ground, but poorly in soft soil. One alternative is to use lugged wheels, which increase the traction in soft soils. In this letter we propose a robot with shape-shifting wheels that allow it to steer in both rigid and soft soils. The wheels use a cam mechanism to push out and retract lugs stored on its inside. The shape of the wheel can be manipulated by controlling the driving torque exerted on the cam mechanism. Through experiments we verified that the developed mechanism allowed the follower robots to control their relative angle with respect to the leader in both rigid and soft soils.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2020.3010495