Dual-Hop Optical Communication Systems Over Málaga Turbulence Under Pointing Error Impairments With Decode-and-Forward Protocol

As a promising technology, free-space optical (FSO) communication plays an important role in the next generation of wireless communication. A dual-hop FSO communication system with decode-and-forward (DF) protocol is proposed in this paper, considering the influences of the atmospheric turbulence (A...

Full description

Saved in:
Bibliographic Details
Published inIEEE photonics journal Vol. 14; no. 6; pp. 1 - 15
Main Authors Yu, Xiaozong, Xu, Guanjun, Zhang, Qinyu, Song, Zhaohui
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As a promising technology, free-space optical (FSO) communication plays an important role in the next generation of wireless communication. A dual-hop FSO communication system with decode-and-forward (DF) protocol is proposed in this paper, considering the influences of the atmospheric turbulence (AT), atmospheric absorption and pointing error impairments, in which the Málaga distribution model is used to characterize the fading caused by AT in each link. The end-to-end statistical expressions of our proposed dual-hop Málaga-Málaga communication system are derived, such as the cumulative distribution function (CDF), probability density function and moment generating function. Thereafter, using the above statistical results, the accurate end-to-end expressions of outage probability, average bit error rate (ABER) and ergodic capacity are deduced under the direct detection intensity modulation and heterodyne detection techniques. Furthermore, the end-to-end asymptotic expressions for CDF and the ABER at high signal-to-noise ratio as well as simplified expressions from simple basic functions are obtained. The effects of different AT and pointing error impairments conditions on the proposed system are analyzed based on theoretical and numerical results. Finally, Monte Carlo simulation results indicate that all our novel deduced expressions are basically consistent with the numerical results.
ISSN:1943-0655
1943-0655
1943-0647
DOI:10.1109/JPHOT.2022.3216283