Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers

In this work, the engineered polyaniline (PANI)/epoxy composites reinforced with PANI-M (physical mixture of PANI spheres and fibers) exhibit significantly enhanced electromagnetic wave absorption performance and mechanical property. Due to the synergistic effect of PANI fillers with different geome...

Full description

Saved in:
Bibliographic Details
Published inAdvanced composites and hybrid materials Vol. 5; no. 3; pp. 1769 - 1777
Main Authors Guo, Jiang, Chen, Zhuoran, Xu, Xiaojian, Li, Xu, Liu, Hu, Xi, Shaohua, Abdul, Waras, Wu, Qing, Zhang, Pei, Xu, Ben Bin, Zhu, Jianfeng, Guo, Zhanhu
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, the engineered polyaniline (PANI)/epoxy composites reinforced with PANI-M (physical mixture of PANI spheres and fibers) exhibit significantly enhanced electromagnetic wave absorption performance and mechanical property. Due to the synergistic effect of PANI fillers with different geometries, the reflection loss of 10.0 wt% PANI-M/epoxy could reach − 36.8 dB at 17.7 GHz. Meanwhile, the mechanical properties (including tensile strength, toughness, and flexural strength) of PANI/epoxy were systematically studied. Compared with pure epoxy, the tensile strength of epoxy with 2.0 wt% PANI-M was improved to 86.2 MPa. Moreover, the PANI spheres (PANI-S) and PANI fibers (PANI-F) were prepared by the chemical oxidation polymerization method and interface polymerization method, respectively. The characterizations including scanning electron microscope, Fourier transform infrared spectra, and X-ray diffraction were applied to analyze the morphology and chemical and crystal structures of PANI filler. This work could provide the guideline for the preparation of advanced engineered epoxy nanocomposites for electromagnetic wave pollution treatment. Graphical abstract
ISSN:2522-0128
2522-0136
DOI:10.1007/s42114-022-00417-2