Minimax perturbation bounds of the low-rank matrix under Ky Fan norm
This paper considers the minimax perturbation bounds of the low-rank matrix under Ky Fan norm. We first explore the upper bounds via the best rank-$ r $ approximation $ \hat{A}_r $ of the observation matrix $ \hat{A} $. Next, the lower bounds are established by constructing special matrix groups to...
Saved in:
Published in | AIMS mathematics Vol. 7; no. 5; pp. 7595 - 7605 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2022426 |
Cover
Loading…
Summary: | This paper considers the minimax perturbation bounds of the low-rank matrix under Ky Fan norm. We first explore the upper bounds via the best rank-$ r $ approximation $ \hat{A}_r $ of the observation matrix $ \hat{A} $. Next, the lower bounds are established by constructing special matrix groups to show the upper bounds are tight on the low-rank matrix estimation error. In addition, we derive the rate-optimal perturbation bounds for the left and right singular subspaces under Ky Fan norm $ \sin\Theta $ distance. Finally, some simulations have been carried out to support our theories. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2022426 |