On the metric basis in wheels with consecutive missing spokes

If $G$ is a connected graph, the $distance$ $d(u, v)$ between two vertices $u, v \in V(G)$ is the length of a shortest path between them. Let $W = \{w_1,w_2, \dots ,w_k\}$ be an ordered set of vertices of $G$ and let $v$ be a vertex of $G$. The $representation$ $r(v|W)$ of $v$ with respect to $W$ is...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 5; no. 6; pp. 6221 - 6232
Main Authors Ahtsham Ul Haq Bokhary, Syed, Zill-e-Shams, Ghaffar, Abdul, Sooppy Nisar, Kottakkaran
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:If $G$ is a connected graph, the $distance$ $d(u, v)$ between two vertices $u, v \in V(G)$ is the length of a shortest path between them. Let $W = \{w_1,w_2, \dots ,w_k\}$ be an ordered set of vertices of $G$ and let $v$ be a vertex of $G$. The $representation$ $r(v|W)$ of $v$ with respect to $W$ is the k-tuple $(d(v,w_1), d(v,w_2), \dots , d(v,w_k))$. $W$ is called a $resolving set$ or a $locating set$ if every vertex of $G$ is uniquely identified by its distances from the vertices of $W$, or equivalently if distinct vertices of $G$ have distinct representations with respect to $W$. A resolving set of minimum cardinality is called a $metric basis$ for $G$ and this cardinality is the $metric dimension$ of $G$, denoted by $\beta(G)$. The metric dimension of some wheel related graphs is studied recently by Siddiqui and Imran. In this paper, we study the metric dimension of wheels with $k$ consecutive missing spokes denoted by $W(n,k)$. We compute the exact value of the metric dimension of $W(n,k)$ which shows that wheels with consecutive missing spokes have unbounded metric dimensions. It is natural to ask for the characterization of graphs with an unbounded metric dimension. The exchange property for resolving a set of $W(n,k)$ has also been studied in this paper and it is shown that exchange property of the bases in a vector space does not hold for minimal resolving sets of wheels with $k$-consecutive missing spokes denoted by $W(n,k)$.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2020400