A Circularly Symmetric Antenna Design With High Polarization Purity and Low Spillover

We describe the development of two circularly symmetric antennas with high polarization purity and low spill-over. Both were designed to be used in an all-sky polarization and intensity survey at 5 GHz (the C-Band All-Sky Survey, C-BASS). The survey requirements call for very low cross-polar signal...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 61; no. 1; pp. 117 - 124
Main Authors Holler, C. M., Taylor, A. C., Jones, M. E., King, O. G., Muchovej, S. J. C., Stevenson, M. A., Wylde, R. J., Copley, C. J., Davis, R. J., Pearson, T. J., Readhead, A. C. S.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2013
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We describe the development of two circularly symmetric antennas with high polarization purity and low spill-over. Both were designed to be used in an all-sky polarization and intensity survey at 5 GHz (the C-Band All-Sky Survey, C-BASS). The survey requirements call for very low cross-polar signal levels and far-out sidelobes. Two different existing antennas, with 6.1-m and 7.6-m diameter primaries, were adapted by replacing the feed and secondary optics, resulting in identical beam performances of 0.73 ° FWHM, cross-polarization better than - 50 dB, and far-out sidelobes below -70 dB. The polarization purity was realized by using a symmetric low-loss dielectric foam support structure for the secondary mirror, avoiding the need for secondary support struts. Ground spill-over was largely reduced by using absorbing baffles around the primary and secondary mirrors, and by the use of a low-sidelobe profiled corrugated feedhorn. The 6.1-m antenna and receiver have been completed and tested. Results show that the co-polar beam matches the design simulations very closely in the main beam and down to levels of - 80 dB in the backlobes. With the absorbing baffles in place the far-out ( >; 100 ° ) sidelobe response is reduced below -90 dB. Cross-polar response could only be measured down to a noise floor of - 20 dB but is also consistent with the design simulations. Temperature loading and groundspill due to the secondary support were measured at less than 1 K.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2012.2219843