Adaptive control for a sensorless permanent-magnet synchronous motor drive
An adaptive velocity controller for a permanent-magnet synchronous motor without using shaft sensor is presented. Two line-to-line voltages and two stator currents are sensed to produce the flux position. The design part is concerned with the formulation of control algorithm for current-regulated pu...
Saved in:
Published in | IEEE transactions on aerospace and electronic systems Vol. 30; no. 3; pp. 900 - 909 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.07.1994
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An adaptive velocity controller for a permanent-magnet synchronous motor without using shaft sensor is presented. Two line-to-line voltages and two stator currents are sensed to produce the flux position. The design part is concerned with the formulation of control algorithm for current-regulated pulsewidth modulated inverter and vector control strategy for speed loop. Under the vector control framework, self-tuning, model following, and model referencing adaptive control are applied to design for the speed-loop controllers. The implementational part integrates the control of current and speed loop using microprocessor-based controllers. Experimental case studies that correlate simulation and measurement results are provided. The experimental results validate the theoretical development. A new approach for designing advanced adaptive controller for a sensorless ac drive is provided.< > |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/7.303758 |