Direct observation of peptide hydrogel self-assembly

The characterization of self-assembling molecules presents significant experimental challenges, especially when associated with phase separation or precipitation. Transparent window infrared (IR) spectroscopy leverages site-specific probes that absorb in the "transparent window" region of...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 13; no. 34; pp. 12 - 128
Main Authors Adams, Zoë C, Olson, Erika J, Lopez-Silva, Tania L, Lian, Zhengwen, Kim, Audrey Y, Holcomb, Matthew, Zimmermann, Jörg, Adhikary, Ramkrishna, Dawson, Philip E
Format Journal Article
LanguageEnglish
Published CAMBRIDGE Royal Soc Chemistry 31.08.2022
Royal Society of Chemistry
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The characterization of self-assembling molecules presents significant experimental challenges, especially when associated with phase separation or precipitation. Transparent window infrared (IR) spectroscopy leverages site-specific probes that absorb in the "transparent window" region of the biomolecular IR spectrum. Carbon-deuterium (C-D) bonds are especially compelling transparent window probes since they are non-perturbative, can be readily introduced site selectively into peptides and proteins, and their stretch frequencies are sensitive to changes in the local molecular environment. Importantly, IR spectroscopy can be applied to a wide range of molecular samples regardless of solubility or physical state, making it an ideal technique for addressing the solubility challenges presented by self-assembling molecules. Here, we present the first continuous observation of transparent window probes following stopped-flow initiation. To demonstrate utility in a self-assembling system, we selected the MAX1 peptide hydrogel, a biocompatible material that has significant promise for use in drug delivery and medical applications. C-D labeled valine was synthetically introduced into five distinct positions of the twenty-residue MAX1 β-hairpin peptide. Consistent with current structural models, steady-state IR absorption frequencies and linewidths of C-D bonds at all labeled positions indicate that these side chains occupy a hydrophobic region of the hydrogel and that the motion of side chains located in the middle of the hairpin is more restricted than those located on the hairpin ends. Following a rapid change in ionic strength to initiate self-assembly, the peptide absorption spectra were monitored as function of time, allowing determination of site-specific time constants. We find that within the experimental resolution, MAX1 self-assembly occurs as a cooperative process. These studies suggest that stopped-flow transparent window FTIR can be extended to other time-resolved applications, such as protein folding and enzyme kinetics. To facilitate the characterization of phase-transitioning molecules, site-specific non-perturbative infrared probes are leveraged for continuous observation of the self-assembly of fibrils in a peptide hydrogel following stopped-flow initiation.
Bibliography:https://doi.org/10.1039/d1sc06562a
Electronic supplementary information (ESI) available: Python code used to analyze and interpret IR data is available as a package. See
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-6520
2041-6539
DOI:10.1039/d1sc06562a