Promotional effect of CO pretreatment on CuO/CeO2 catalyst for catalytic reduction of NO by CO
The CuO/CeO2 catalysts were investigated by means of X-ray diffraction (XRD), laser Raman spectroscopy (LRS), X-ray photoelectronic spectroscopy (XPS), temperature-programmed reduction (TPR), in situ Fourier transform infrared spectroscopy (FTIR) and NO+CO reaction. The results revealed that the low...
Saved in:
Published in | Journal of rare earths Vol. 32; no. 2; pp. 139 - 145 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The CuO/CeO2 catalysts were investigated by means of X-ray diffraction (XRD), laser Raman spectroscopy (LRS), X-ray photoelectronic spectroscopy (XPS), temperature-programmed reduction (TPR), in situ Fourier transform infrared spectroscopy (FTIR) and NO+CO reaction. The results revealed that the low temperature (〈150℃) catalytic performances were enhanced for CO pretreated samples. During CO pretreatment, the surface Cu+/Cu0 and oxygen vacancies on ceria surface were present. The low va- lence copper species activated the adsorbed CO and surface oxygen vacancies facilitated the NO dissociation. These effects in turn led to higher activities of CuO/CeO2 for NO reduction. The current study provided helpful understandings of active sites and reaction mechanism in NO+CO reaction. |
---|---|
Bibliography: | 11-2788/TF The CuO/CeO2 catalysts were investigated by means of X-ray diffraction (XRD), laser Raman spectroscopy (LRS), X-ray photoelectronic spectroscopy (XPS), temperature-programmed reduction (TPR), in situ Fourier transform infrared spectroscopy (FTIR) and NO+CO reaction. The results revealed that the low temperature (〈150℃) catalytic performances were enhanced for CO pretreated samples. During CO pretreatment, the surface Cu+/Cu0 and oxygen vacancies on ceria surface were present. The low va- lence copper species activated the adsorbed CO and surface oxygen vacancies facilitated the NO dissociation. These effects in turn led to higher activities of CuO/CeO2 for NO reduction. The current study provided helpful understandings of active sites and reaction mechanism in NO+CO reaction. CuO/CeO2 catalysts; CO pretreatment; oxygen vacancies; NO reduction; rare earths |
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/S1002-0721(14)60043-0 |