Reactivity of amines with hypochlorous acid: Computational study of steric, electronic, and medium effects

N‐Chlorination reactions of alkyl‐, cycloalkyl‐, heterocyclic, and aromatic amines by HOCl have been investigated in the gas and aqueous phase. Density functional (B3LYP), double hybrid (B2PLYPD), and composite theoretical model (G3B3) have been used to assess steric, electronic, and solvent effects...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of quantum chemistry Vol. 113; no. 7; pp. 881 - 890
Main Authors Tarade, Tena, Vrček, Valerije
Format Journal Article
LanguageEnglish
French
German
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 05.04.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:N‐Chlorination reactions of alkyl‐, cycloalkyl‐, heterocyclic, and aromatic amines by HOCl have been investigated in the gas and aqueous phase. Density functional (B3LYP), double hybrid (B2PLYPD), and composite theoretical model (G3B3) have been used to assess steric, electronic, and solvent effects on the reactivity of different families of amines toward HOCl. When solvent effects are included by using CPCM/UAHF model, all computational methods predict the same order of reactivity within each group of amines. In agreement with experimental data, heterocyclic amines have the highest reactivity, with energy barriers calculated between 160 and 225 kJ mol−1 (B2PLYPD/AUG‐cc‐pVTZ//B3LYP/6‐31G(d) level). The substituted anilines are the least reactive species, with energy barriers calculated as high as 300 kJ mol−1. Two different reaction mechanisms of N‐chlorination have been considered in the gas phase: the one which includes the transition state TSa with cyclic arrangement of four atoms (N, Cl, O, and H) involved in an intramolecular rearrangement, and the second in which the hydrogen‐bridged structure TSb is characterized with the linear NClO moiety. The former is energetically more feasible (ca. 120 kJ mol−1) for alkyl‐, cycloalkyl‐, and heterocyclic amines, whereas the latter is operative in the case of aromatic amines. If two water molecules are explicitly included in the calculations, the rate‐determining transition state TSw has been located for N‐chlorination of all amines under study. It is characterized by eight‐membered ring geometry in which water molecules assist the simultaneous transfer of the three hydrogen atoms coupled with the NCl bond formation. To reproduce the experimentally observed trends in reactivity of amines, the inclusion of bulk and specific solvent effects is mandatory. Steric effects have been found to govern the reactivity of alkylamines, that is, more bulkier amines react slower with HOCl. It has been found that electronic structure parameters (HOMO–LUMO gap, natural bond orbital occupancy, and NPA charge on N atom) can be successfully used as descriptors for the reactivity of heterocyclic and aromatic amines. These results indicate the predictive power of our computational approach, which can be applied to calculate nucleophilic reactivities of more complex structures of environmentally or biologically relevant amines. © 2012 Wiley Periodicals, Inc. N‐Chlorination reactions of alkyl‐, cycloalkyl‐, heterocyclic, and aromatic amines by HOCl have been investigated computationally in the gas and aqueous phase. Different descriptors for the amine reactivity have been considered. The comparative study provides good agreement with the experimental order of reactivity within each group of amines and has predictive power for studying larger systems.
Bibliography:istex:FF6942362EA4AD841EAF0515F058F998F007118C
ark:/67375/WNG-PH3K4T05-S
ArticleID:QUA24007
Fax: (+385) 1 4856201
ISSN:0020-7608
1097-461X
DOI:10.1002/qua.24007