Minimization principles for elliptic hemivariational inequalities

In this paper, we explore conditions under which certain elliptic hemivariational inequalities permit equivalent minimization principles. It is shown that for an elliptic variational–hemivariational inequality, under the usual assumptions that guarantee the solution existence and uniqueness, if an a...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 54; p. 103114
Main Author Han, Weimin
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.08.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we explore conditions under which certain elliptic hemivariational inequalities permit equivalent minimization principles. It is shown that for an elliptic variational–hemivariational inequality, under the usual assumptions that guarantee the solution existence and uniqueness, if an additional condition is satisfied, the solution of the variational–hemivariational inequality is also the minimizer of a corresponding energy functional. Then, two variants of the equivalence result are given, that are more convenient to use for applications in contact mechanics and in numerical analysis of the variational–hemivariational inequality. When the convex terms are dropped, the results on the elliptic variational–hemivariational inequalities are reduced to that on “pure” elliptic hemivariational inequalities. Finally, two representative examples from contact mechanics are discussed to illustrate application of the theoretical results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2020.103114