Effect of hydrocolloid addition on dimensional stability in post-processing of 3D printable cookie dough
This paper provides a solution to the problem of the deformation of 3D printed cookie products during post-processing such as baking. The influence of the incorporation of hydrocolloids on the dimensional stability of the cookie dough during temperature variations was investigated. Methylcellulose a...
Saved in:
Published in | Food science & technology Vol. 101; pp. 69 - 75 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper provides a solution to the problem of the deformation of 3D printed cookie products during post-processing such as baking. The influence of the incorporation of hydrocolloids on the dimensional stability of the cookie dough during temperature variations was investigated. Methylcellulose and xanthan gum were blended in mass fractions of 0.5, 1, 2, and 3 g/100 g dough basis. In dynamic viscoelasticity experiments, during the temperature sweep, the cookie doughs with methylcellulose showed losses in storage modulus (G′) and loss modulus (G″) that were comparable to those of the control samples. Although the incorporated xanthan gum exhibited high structural retention owing to its high shear modulus, its low extrudability resulted in a high extrusion hardness and poor 3D printing performance. In the post-processing, sufficient dimensional stability was observed even with a xanthan gum incorporation of 0.5 g/100 g. Moreover, the heat-resistant 3D printable cookie samples with 0.5 g/100 g xanthan gum exhibited a texture profile having a hardness and fracturability similar to those of the control cookies.
•Effect of hydrocolloid on the dimensional stability of the cookie during post-processing.•Development of heat resistance 3D printable cookie dough.•Post-processing stabilization technique that exhibits properties similar to original product. |
---|---|
ISSN: | 0023-6438 1096-1127 |
DOI: | 10.1016/j.lwt.2018.11.019 |