Drug-dye-apoptosis inducing micelles for enhancing host immunity against advanced metastatic breast cancer by the combination of low dose chemotherapy and photothermal therapy
[Display omitted] Tumor metastasis is associated with high mortality in breast cancer patients. Although photothermal therapy (PTT) has arisen as a promising anticancer treatment approach, PTT-based monotherapies still fail to eradicate advanced cancers due to the immunosuppressive microenvironment....
Saved in:
Published in | Journal of industrial and engineering chemistry (Seoul, Korea) Vol. 97; pp. 476 - 484 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
25.05.2021
한국공업화학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1226-086X 1876-794X |
DOI | 10.1016/j.jiec.2021.03.003 |
Cover
Summary: | [Display omitted]
Tumor metastasis is associated with high mortality in breast cancer patients. Although photothermal therapy (PTT) has arisen as a promising anticancer treatment approach, PTT-based monotherapies still fail to eradicate advanced cancers due to the immunosuppressive microenvironment. Herein, we synthesized drug-dye-lipid-like micelles composed of thermoresponsive poloxamer conjugated with linoleic acid (PCLA) loaded with a chemotherapeutic drug doxorubicin (DOX) and a near-infrared dye IR-780 (PCLA-ID) to enhance antitumor immunity against progressive metastatic breast cancers. Intravenous administration of sub-100nm sized PCLA-ID in breast tumor-bearing mice followed by local laser irradiation eliminated not only primary tumors, but also untreated distant tumors (abscopal effect). The combinatorial treatment of apoptosis-inducing PCLA-ID, which contained DOX at a subtherapeutic dose, and PTT augmented the maturation of tumor-draining lymph nodes, the upregulation of cytotoxic T lymphocytes, and the suppression of regulatory T cells in untreated secondary tumors. These events prevented lung metastasis in tumor-bearing mice after re-challenging with a second injection of breast cancer cells. We conclude that PCLA-ID nanoparticles can enhance immunogenic cell death, representing a promising strategy for triggering immune responses against advanced metastatic breast cancers. |
---|---|
ISSN: | 1226-086X 1876-794X |
DOI: | 10.1016/j.jiec.2021.03.003 |