Functional equations characterizing the tangent function over a convex polygon

In 2004, Benz, affirming an earlier result of Davison, proved that for the three angles x , y , z of a non-degenerate triangle, the functional equation f ( x ) f ( y ) f ( z ) =  f ( x ) +  f ( y ) +  f ( z ) characterizes the tangent function. We generalize this result by exhibiting a functional eq...

Full description

Saved in:
Bibliographic Details
Published inAequationes mathematicae Vol. 88; no. 3; pp. 201 - 210
Main Authors Hengkrawit, Charinthip, Laohakosol, Vichian, Ponpetch, Kanet
Format Journal Article
LanguageEnglish
Published Basel Springer Basel 01.12.2014
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In 2004, Benz, affirming an earlier result of Davison, proved that for the three angles x , y , z of a non-degenerate triangle, the functional equation f ( x ) f ( y ) f ( z ) =  f ( x ) +  f ( y ) +  f ( z ) characterizes the tangent function. We generalize this result by exhibiting a functional equation, with n parameters representing the angles of a non-degenerate convex n -gon, which characterizes the tangent function.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0001-9054
1420-8903
DOI:10.1007/s00010-013-0229-3